

Outer Plans Entry Probe System Study

Final Report

Volume III Appendixes

August 1972

MARTIN MARIETTA

OUTER PLANET ENTRY PROBE SYSTEM STUDY

FINAL REPORT

R. S. Wiltshire Program Manager

2. S. Wiltshure

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

MARTIN MARIETTA CORPORATION P. O. Box 179 Denver, Colorado 80201

Survivable Saturn Atmosphere Probe

FOREWORD

This final report has been prepared in accordance with requirements of Contract JPL-953311 to present data and conclusions from a six-month study for the Jet Propulsion Laboratory by Martin Marietta Aerospace, Denver Division. The report is divided into the following volumes:

Volume I - Summary

Volume II - Supporting Technical Studies

Volume III - Appendixes

The following Martin Marietta Corporation, Denver Division, personnel participated in this study, and their efforts are greatly appreciated:

Raymond S. Wiltshire Allen R. Barger Eugene A. Berkery

Dennis V. Byrnes Philip C. Carney Patrick C. Carroll Revis E. Compton, Jr. Robert G. Cook Douglas B. Cross Ralph F. Fearn Robert B. Fischer Thomas C. Hendricks John W. Hungate Carl L. Jensen Melvin W. Kuethe/ Rufus O. Moses Kenneth W. Ledbetter Paula S. Lewis John R. Mellin Jack D. Pettus Robert J. Richardson Arlen I. Reichert E. Doyle Vogt Donald E. Wainwright Clifford M. Webb Charles E. Wilkerson

Study Leader, Program Manager Science Integration Telecommunications, Data Handling, Power, and ACS, Lead Navigation Mission Analysis Systems Telecommunications Mechanical Design Mission Analysis Propulsion Mission Analysis Mission Analysis Systems, Lead Thermal Analysis Mechanical/Structural/Probe Integration, Lead Science, Lead Mission Analysis Structures Data Link Analysis Receiver Systems Propulsion Mission Analysis, Lead Systems Thermal Analysis Data Handling

CONTENTS

APPENDIXES		Page
Α.	Microwave Losses in the Atmospheres of	
	Jupiter, Saturn, and Uranus	A-1
	,,	thru
		A-23
В.	Microwave Frequency Selection	B-1
		thru
		B-19
C.	Spacecraft Receiver	C-1
		thru
		C-13
D.	Mission Antenna Analysis and Design	D-1
		thru
	G C. Di	D-12
E.	Summary of Planetary Atmospheres and	
	Related Constraints	E-1
		thru
F.	Attitude Control Subgrates Analysis	E-25
F •	Attitude Control Subsystem Analysis	F-1
		thru
G.	Electrical Power and Pyrotechnic Subsystems	F-17 G-1
٠.	Executical lower and rylocecomic Subsystems	thru
		G-19
н.	Data Handling Subsystem Analysis	G-19
	and Definition	H-1
		thru
		H-10
I.	Monte Carlo Deflection Dispersion Analysis	I-1
		thru
		I-15
J.	Multilayer Insulation Conductivity Evaluation	J-1
	·	thru
		J -3
K.	NH_3 and H_2O Cloud Models for the	
	Outer Planets	K-1
	outer ranges	thru
		K-28
L.	Vertical Descent Program for Science Instrument	K-20
. .	Simulation (DATAT), Descent Runs for Jupiter	
	and Saturn	L-1
		thru
		1-48

м.	Propulsion Subsystem Analysis	
	and Definition	M-1
		thru
		M-33
N.	Response Time for a Ballast Volume Type Mass	
	Spectrometer Inlet System	N-1
		thru
		N-3
0.	Aeroshell Structure Parametric Weight Study	0-1
		thru
		0-26
P.	Lightweight Jupiter Probe Definition	P-1
		thru
		P-5
Q.	Separation Spring Analysis	Q-1
		and
		0-2

APPENDIX A

MICROWAVE LOSSES IN THE ATMOSPHERES OF JUPITER, SATURN, AND URANUS

R. J. Richardson and R. E. Compton, Jr.

June 6, 1972

The techniques used to calculate microwave losses in the planet atmospheres are essentially those used on the original Jupiter atmospheric study as described in the final report of that contract (Ref 1). A long list of references given in this report will not be repeated here (Ref 1, p IV-136). Some changes have been made in the methods of calculating cloud absorption, which are outlined in this appendix.

The atmospheres of the three planets are all quite similar, being composed primarily of hydrogen (H2) and helium (He) with trace amounts of other gasses. The principal sources of absorption in the atmospheres are (1) pressure broadening of absorption lines in the polarizable gasses, ammonia (NH_3) and water (H_2O) and (2)absorption in the clouds. Total attenuation increases as the aspect angle is moved away from zenith. Absorption is computed as a function of elevation, z, measured from an altitude where the pressure is one bar; the look vector aspect angle measured from zenith, ψ ; and the transmission frequency, f. A second source of signal loss is defocusing loss caused by ray-bending in the dense atmosphere. This loss is computed as a function of z and ψ and is independent of frequency. The atmosphere models are derived from the contractual documents supplied by JPL. Both the "nominal" and the "cool/dense" atmospheres were worked for Jupiter, while only the "nominal" atmospheres were analyzed for the other two planets.

A. ABSORPTION LOSSES

Ammonia (NH₃) has a large group of absorption lines (the inversion spectrum) centered around 25 GHz. These lines are very narrow at low pressure and are broadened by increasing pressure, merging into a single line for pressures greater than one atm. Although 25 GHz is remote from the frequency band of interest for telecommunications (around 1 to 2 GHz), line broadening caused by the very high pressures encountered in the mission is sufficient to cause substantial attenuation even at these relatively low frequencies. It was found that even the rotational spectrum of NH₃, extending upward from 600 GHz, results in an absorption at these pressures that is not completely negligible. Similarly, water (H₂O) has a spectrum of absorption lines extending upward from 22 GHz with pressure broadening causing the effects to be perceptible at the much lower frequencies of interest for this mission.

1. Ammonia Absorption

The Ben-Reuven (Ref 2) line shape was used for absorption caused by gaseous NH3. The Ben-Reuven shape factor is given by

$$SF = \frac{2(\gamma - \beta)f^{2} + 2(\gamma + \beta)\left(\nu_{0}^{2} + \gamma_{2}^{2} - \beta^{2}\right)}{\left(f^{2} - \nu_{0}^{2} - \gamma^{2} + \beta^{2}\right)^{2} + (2f\gamma)^{2}}$$
[A-1]

 ν_o is the line resonant frequency, 25 GHz. For this application, f << ν_o . β and γ are proportional to density. This gives

$$SF \cong \frac{2(\gamma + \beta)}{\nu_0^2 + \gamma^2 - \beta^2}$$
 [A-2]

$$\cong \frac{2(\gamma + \beta)}{v_0^2}$$
 (low pressures) [A-3]

$$\approx \frac{2}{\gamma - \beta}$$
 (high pressures) [A-4]

and β , γ , ν_0 , and f are in GHz.

Computation of the absorption coefficient, $\alpha(z)$, was done using Equation [A-5]. This was then integrated over the atmosphere

profile to give the total zenith absorption.
$$\alpha(z)$$
 and $\int_{z_0}^{\infty} \alpha(z)dz$

are converted to dB per km and dB by the factor $10 \log_{10}(e) = 4.35$. The absorption coefficient is computed from

$$\alpha(z) = k_1 f^2 A_N SF(z) \left[\frac{P(z)}{T(z)^2} \right] km^{-1}$$
 [A-5]

where A_N is the abundance of ammonia, P is the pressure in atm, T is the temperature in $^{\circ}K,\ SF(z)$ is defined by Equations [A-2] through [A-4], f is the applied frequency in GHz, and k_1 is matched to experimental data. Since γ and β are proportional to density, which increases with depth in the atmosphere, we can write

$$\gamma(z) = k_2 \frac{P(z)}{T(z)}$$
 [A-6]

$$\beta(z) = k_3 \frac{P(z)}{T(z)}$$
 [A-7]

where k_2 and k_3 are matched to experimental data and are a function of the foreign gasses, H_2 and H_e , as well as the absorbing gas, ammonia.

Values used for k_1 , k_2 , and k_3 are

$$k_1 = 2.028 \times 10^6$$
 [A-8]

$$k_2 = 462.8 \left(A_{H_2} + 0.24 A_{He} \right)$$
 [A-9]

$$k_3 = 231.4 \left(A_{H_2} + 0.24 A_{He} \right)$$
 [A-10]

where A_{H_2} and A_{He} are abundances of H_2 and He, respectively.

The contribution caused by the rotational spectrum of ammonia is quite small, less than 5% of the inversion spectrum contribution at high pressures in a nominal atmosphere and less at low pressures. However, it was included in the computation. It follows the relationship

$$\alpha_{\text{rot}} = 71.1A_{\text{N}} f^2 \left(A_{\text{H}_2} + 0.267 A_{\text{He}}\right) \frac{P(z)^2}{T(z)^{2.5}}$$
 km⁻¹ [A-11]

2. Water Vapor

Based on measured data, it was decided that the approach used by Ho (Ref 3), modified to match the $\rm H_2$ - He foreign gasses on the outer planets, will give more accurate results at high pressure than the line-broadening approach. This gives the relationship

$$\alpha_{\text{H}_2\text{O}} = 7.35 \times 10^6 \left(1023 \, \text{A}_{\text{H}_2} + 870 \, \text{A}_{\text{He}}\right) \, \text{A}_{\text{H}_2\text{O}} \, \text{f}^2 \, \frac{\text{P(z)}^2}{\text{T(z)}^5}$$
 [A-12]

where $A_{\rm H_2O}$ is the water vapor abundance. Water contribution to the absorption is less than 10% of the total in all of the model atmospheres for which absorption was computed.

3. Clouds

The only clouds that give significant absorption are the liquid droplet water-ammonia (H_2O-NH_3) solution clouds. Calculation of these losses is complicated by the electrical conductivity of the solution, which is a function of solution strength, and varies with elevation within the cloud. In order to determine the effect of these clouds, it is necessary to determine the dielectric constant and electrical conductivity as a function of temperature and solution strength. Conductivity, σ (ohm⁻¹ m⁻¹), as a function of solution strength, at 291°K is shown in Figure A-1 (Ref 4). Conductivity varies with temperature in °K, with respect to the conductivity at 291°K as shown in Figure A-1, approximately as

$$\sigma(T) \approx \sigma(291) \left(\frac{T}{291}\right)^{6\cdot 2}$$
 [A-13]

The NH $_3$ and H $_2$ O solution is characterized as weak electrolytes with low conductivity. The complex dielectric constant, ϵ_j , is taken from Reference 5 and defined by

$$\varepsilon_{j} = \varepsilon_{r} + j\varepsilon_{i}$$
 [A-14]

where

$$\varepsilon_{\rm r} = \frac{\varepsilon_{\rm o} + \varepsilon_{\rm o} (\lambda_{\rm c}/\lambda)^2}{1 + (\lambda_{\rm c}/\lambda)^2}$$
 [A-15]

$$\varepsilon_{\infty} \cong 81.1 \left(\frac{291}{T}\right)^{1.4}$$
, and $\varepsilon_{0} \cong 5$

over the temperature range of interest for water. The RF wavelength, λ , is given by

$$\lambda = \frac{30}{f} \text{ cm}$$
 [A-17]

for the frequency, f, in GHz.

The critical wavelength, $\lambda_{_{\mbox{\scriptsize C}}}$, is approximated by

$$\lambda_{c} \cong 3.34 \left(\frac{273}{T}\right)^{7 \cdot 2} \text{ cm}$$
 [A-18]

with T in °K.

Figure A-1 Specific Conductivity of ${\tt NH}_3$ - ${\tt H}_2{\tt O}$ Solution Clouds

The imaginary portion of the dielectric constant is given by

$$\varepsilon_{i} = \frac{\left(\varepsilon_{\infty} - \varepsilon_{o}\right)\left(\lambda_{c}/\lambda\right)}{1 + \left(\lambda_{c}/\lambda\right)^{2}} + 60 \ \lambda\sigma.$$
 [A-19]

The cloud absorption coefficient α_c is given by

$$\alpha_c = BM dB/km$$
 [A-20]

where M is the cloud density in g/m^3 and B is ideally given by

$$B = 0.4343 \frac{6\pi}{\lambda} \operatorname{Im} \left(-\frac{\varepsilon_{j} - 1}{\varepsilon_{j} + 2} \right).$$
 [A-21]

Over the frequency range of interest, this simplifies to

$$B \simeq \frac{24.53 \, \epsilon_{i}}{\left[\left(\epsilon_{r} + 2 \right)^{2} + \epsilon_{i}^{2} \right] \lambda}$$
 [A-22]

4. Absorption Results

The equations cited above were programmed to compute gaseous absorption and the integral of absorption versus depth of penetration into the atmosphere. The model atmosphere data were placed into the computation using a data deck of P, T, and z with 5-km intervals on z. Abundances used deep in the atmosphere were taken from the contract model atmospheres. Variations in $\rm NH_3$ and $\rm H_2O$ abundances in and above the clouds were computed for one case. It was found that these abundances dropped so rapidly in and above the clouds that adequate accuracy for absorption computations is given by

$$\mathbf{A'_{NH_3}} = \begin{cases} \mathbf{A_{NH_3}} & \text{when } \mathbf{T(z)} \ge \mathbf{T_{sat}} \\ \mathbf{0} & \text{when } \mathbf{T(z)} < \mathbf{T_{sat}} \end{cases}$$
 [A-23]

where

 A_{NH_3} = ammonia abundance

z = elevation from pressure of one bar, km

T = temperature, °K

 T_{sat} = saturation temperature in the given model, ${}^{\circ}K$

A similar expression was used for water.

A program was developed to compute cloud mass, cloud state (liquid or solid), and cloud composition (solution strength for the $\rm H_2O$ and $\rm NH_3$ solution cloud) as a function of elevation in these atmospheres. The results were used in a separate program to compute cloud absorption as a function of frequency using the formulas given previously. The results, gaseous absorption plus cloud absorption, were then combined. Figures A-2 through A-5 give the results for Jupiter cool/dense, Jupiter nominal, Saturn nominal, and Uranus nominal. Jupiter nominal and Saturn nominal do not have solution clouds, so absorption scales as $\rm f^2$ in these models. Jupiter cool and Uranus nominal do have solution clouds, so scaling is not exactly as $\rm f^2$, though it is very nearly so.

B. REFRACTION EFFECTS

1. Defocusing Loss

The technique used to compute defocusing loss has been described in detail in Reference 6 and is summarized here.

First, the refractivity profile was computed, using the equation

$$N'(z) = \frac{P(z)}{T(z)} (37180 A_{H_2} + 9550 A_{He})$$
 [A-24]

where the coefficients of A_{H_2} and A_{He} are matched to measured values at P = 1 atm and T = 273°K. These are N'_{H_2} = 136.1 and N'_{He} = 35.0 from the International Critical Tables.

N'(z) is defined by $n = 1.0 + 10^{-6}$ N'(z), where n is the index of refraction. In subsequent formulas, we use N(z) = 10^{-6} N'(z).

Figure A-2 Zenith Absorption for the Jupiter Cool/Dense Atmosphere

Figure A-3 Zenith Absorption for the Jupiter Nominal Atmosphere

Figure A-4 Zenith Absorption for the Saturn Nominal Atmosphere

Figure A-5 Zenith Attenuation for the Uranus Nominal Atmosphere

The N-profile is then approximated by an exponential

$$N(z) = N(z_0) \exp \left[-\beta (z - z_0)\right]$$
 [A-25]

by selecting β that best matches the profile starting from the selected z $_{0}$. β^{-1} is the scale height.

Ray bending (or pointing error, E) for an exponential atmosphere can be computed from the refraction integral. The ray launch angle, θ , is measured from zenith.

The pointing error as a function of the ray angle is given by

$$E(\theta) = N_{o} n_{o} \sin \theta \int_{0}^{\infty} \frac{e^{-x} dx}{\left(1 + N_{o} e^{-x}\right) \sqrt{\left(1 + \frac{x}{\beta r_{s}}\right)^{2} \left(1 + N_{o} e^{-x}\right)^{2} - n_{o}^{2} \sin^{2} \theta}}.$$
[A-26]

The defocusing loss is calculated from

$$L_{d}(\theta) = \frac{1}{1 + \frac{dE}{d\theta}} .$$
 [A-27]

It is independent of frequency, but is a function of z_0 and θ . It is more convenient to plot L_d vs ψ = θ + $E(\theta)$, the angle at which the ray emerges from the atmosphere. Results for the four atmospheres are shown in Figure A-6 through A-9 with the ray angles defined in Figure A-6.

2. Absorption Loss

For small departures from zenith, attenuation due to atmospheric absorption, $L_a(\theta)$, increases as sec $\theta \cong \sec \psi$. For larger ψ , raybending effects must be considered. $L_a(\theta)$ is bounded by

$$L_a(0)$$
 sec θ (lower bound)
 [A-28]
 $L_a(0)$ sec ψ (upper bound).

Figure A-6 Defocusing Loss for the Jupiter Cool/Dense Atmosphere

Figure A-7 Defocusing Loss for the Jupiter Nominal Atmosphere A-14

Figure A-8 Defocusing Loss for the Saturn Nominal Atmosphere

Figure A-9 Defocusing Loss for the Uranus Nominal Atmosphere

A value midway between these bounds gives adequate accuracy for $L_a(\theta)$. As with L_d , it is more useful to plot L_a as a function of ψ . A normalized absorption loss, L_{an} , is plotted for various depths, z, in all four model atmospheres in Figures A-10 through A-13. The plots are normalized to a zenith absorption of 1 dB. To use them, the appropriate value of $L_{an}(\psi, z)$, taken from these curves, must be multiplied by the actual value of zenith absorption, $L_a(0, z, f)$, taken or scaled from Figures A-2 through A-5. It is clear from these curves that the sec ψ approximation is quite good out to 60 deg off zenith.

Wormalized Loss, Lan, dB

Figure A-10 Normalized Absorption Loss for the Jupiter Cool/Dense Atmosphere

Figure A-11 Normalized Absorption Loss for the Jupiter Nominal Atmosphere

Figure A-12 Normalized Absorption Loss for the Saturn Nominal Atmosphere

Figure A-13 Normalized Absorption Loss for the Uranus Nominal Atmosphere

TRAJECTORY PROGRAM INPUTS

The curves of Figures A-2 through A-13 were not generally used directly in the link calculations. These calculations have been programmed and incorporated as a subroutine (RATMA) into the trajectory program. Empirical curves were matched to these data, giving combined absorption and defocusing loss in a readily computable form as a function of ψ , z, and f. Atmosphere absorption is calculated for zenith as a function of frequency and elevation. Next, absorption is calculated at the probe aspect angle, ψ . Defocusing loss is also calculated at ψ and the total atmosphere attenuation is the sum of absorption and defocusing losses at ψ . Typical missions are designed with small probe aspect angles (<20°) at atmosphere entry and decreasing angle with descent. Therefore, the zenith attenuation is approximately the total attenuation because $L_d(\psi)$ is quite small and $L_a(\psi)$ differs little

from $L_a(0)$. In general,

$$L_A(\psi, z, f) = L_a(\psi, z, f) + L_d(\psi, z)$$
 [A-29]

where

 $L_{A}^{}$ = total atmosphere attenuation including absorption and defocusing loss, dB

 L_2 = atmosphere absorption, dB

 L_d = defocusing loss, dB.

D. REFERENCES

- 1. S. J. Ducsai: Jupiter Atmospheric Entry Mission Study, Final Report, Martin Marietta Corporation, Denver, Colorado, MCR-71-1 (Vol III), Contract JPL 952811, April 1971, pp IV-82 through IV-158.
- 2. A. Ben-Reuven: "Impact Broadening of Microwave Spectra." *Physical Review*, Vol 145, No. 1, May 1966, p 7.
- 3. W. Ho, et al: "Laboratory Measurements of Microwave Absorption in Models of the Atmosphere of Venus." Journal of Geophysical Research, Vol 71, No. 21, November 1, 1966, pp 5091 through 5107.
- 4. Condon and Odeshaw: Handbook of Physics. McGraw-Hill, 1959, Ch 9.
- 5. W. J. Welch and D. G. Rea: "Upper Limits of Liquid Water in the Venus Atmosphere" Astrophysical Journal, Vol 148, No. 6, June 1967, p L151 through L154.
- 6. S. J. Ducsai: 1975 Venus Multiprobe Mission Study, Final Study Report. Martin Marietta Corporation, Denver, Colorado, MCR-70-89 (Vol II), Contract JPL 952534, April 1970, pp VII-1 through VII-18.

APPENDIX B

MICROWAVE FREQUENCY SELECTION

R. E. Compton, Jr.

June 7, 1972

MICROWAVE FREQUENCY SELECTION

There are three factors that contribute heavily to the selection of an optimum RF frequency for the probe-to-spacecraft link. These are the system noise temperature, the atmospheric attenuation, and the space loss which is a function of range and frequency. Lower limit bounds are determined by the physical size of the probe antenna for a given wavelength. In general, the receiver system noise temperature increases, the atmospheric attenuation decreases, and the space loss decreases as the frequency is decreased. In addition, for a mission designed with decreasing range and probe aspect angle versus descent, the space loss will also decrease versus time. The probe antenna gain also increases during descent because of a decrease in the probe aspect angle towards the maximum antenna beam gain point.

A. SPACECRAFT ANTENNA TEMPERATURE FOR A JOVIAN MISSION

The noise temperature of the probe relay antenna on the spacecraft is determined by investigating the sources and magnitudes of decimetric (UHF) radiation from Jupiter. There are two sources of RF noise: thermal radiation from the disk and nonthermal UHF radiation from the Jovian magnetosphere. The spacecraft antenna is directed towards the planet disk while the probe is transmitting descent data and encounters the greatest amount of UHF radiation. The antenna temperature used in the previous Jupiter study (Ref 1) was taken from the microwave brightness temperature curve (Ref 2. Fig. 2-2). This curve is depicted in Figure B-1 for reference. The curve attributed all the measured temperature to the planet disk, which results in a higher radiative flux than if the magnetosphere volume had also been considered. At about 3 cm, the equivalent blackbody disk temperature begins to increase rapidly because of contributions from nonthermal sources, as seen in the 1967 curve of Figure B-1. This effect is also evident in the flux density versus wavelength curve which indicates a slowly decreasing trend departing from that expected for blackbody emissions at a fixed temperature.

Figure B-1 Jovian Disk Brightness Temperature

It was suggested in 1967 (Ref 2, pp 56, 60-62) that the irregular (decimetric) emission apparently originates in the Jovian radiation belts. Various investigations have shown that the intensity of decimetric radiation appears to be constant over long periods of time and has a strong linearly polarized component with a source dimension several times the size of the visible planet disk. It is generally accepted that the radiation is caused by electrons trapped in the magnetic field of Jupiter, forming a Van Allen belt similar to that about Earth. Synchrotron (relativistic) radiation is the mechanism that explains these observed radiation characteristics. Cyclatron radiation is rejected since it requires the presence of an abnormally strong magnetic field.

The latest available information (Ref 3) provides additional knowledge on the radio radiation environment, particularly the Jovian magnetosphere. The environmental design criteria separate the brightness temperature into the two aforementioned sources and provide a model for synchrotron radiation and a disk brightness temperature curve that is lower than the 1967 data.

Kellermann (Ref 4) summarizes the data of many observers in terms of the brightness temperature, T_{pn} , of Jupiter's thermal disk radiation in the lower curves of Figure B-1. The band indicates, with ample uncertainty limits, the range of values reported by several observers. This curve is also used in the design criteria monograph (Ref 3) for the disk brightness temperature. As seen in Figure B-1, the nonthermal radiation contribution has been removed from the earlier curve (1967) resulting in a lower temperature that is in agreement with the latest observations. Thermal radiation from Jupiter's disk is randomly polarized and its brightness temperature is constant in time and uniform over the Jovian disk surface. The slight increase of $T_{\rm RD}$ with wavelength in the centimeter region implies that the radiation emerges from lower, warmer atmospheric levels at longer wavelengths. Thermal radiation is a significant contributor to the UHF radiation environment near Jupiter.

The 1971 monograph (Ref 3) also provides information for determining the noise temperature caused by the Jovian magnetosphere. Non-thermal radiation is observed from a region several Jupiter radii in extent, elongated parallel to the magnetic equator. The axis of the magnetic field is at an angle to the rotational axis and the center of the field is displaced to the south by 0.75 $\rm R_J$ (Ref 2,

p 47). Close to Jupiter spatial distribution of the synchrotron radiation requires the use of data reported by Berge (Ref 5) and Branson (Ref 6).

The monograph (Ref 3, p 47) provides a model and equations that yield approximately correct brightness temperatures for the synchrotron source. The model is shown in Figure B-2. A volume is illustrated enclosed by a sphere of radius 3 $\rm R_J$ centered on the magnetic dipole and truncated by two planes parallel to and 1 $\rm R_J$ away from the magnetic equator. The magnetic axis is tilted from the rotational axis by 8 deg. Displacement of the magnetosphere from the planet disk center was not considered in the model. If D is the path length within the described volume in the direction of observation, the synchrotron brightness temperature, $\rm T_{BS}$, is given by:

$$T_{BS} = \frac{D\lambda^2}{R_T} (0.3 \pm 0.15)$$
 [B-1]

with

T_{BS} = synchrotron brightness temperature, °K

D = path length, km

 λ = wavelength, cm

= 30/f

f = frequency, GHz

 R_J = Jupiter radius, 71,422 km.

The noise temperature of the spacecraft relay antenna is the sum of the thermal disk noise and synchrotron noise since they are considered to be two separate sources and the fluxes add directly. Initial analysis indicated that the worst-case temperature existed when both sources are within the beam of the antenna. For the nominal Jupiter probe mission (Vol.II, Section VB), this geometry exists from near entry to the end of the mission as seen in Figure B-3. The probe-to-spacecraft range decreases with range from E-1.2 hr and then increases to entry. During descent, the range again begins to decrease as seen in Figure B-3. The maximum range during probe transmission occurs at entry and is 9.7 x 10^4 km or $1.36~\mathrm{R}_\mathrm{J}$. Periapsis $\left(2~\mathrm{R}_\mathrm{J}\right)$ is not reached until after mission completion. The maximum synchrotron temperature from Equation [B-1] is:

$$T_{BS} = 1.36 \times 0.45 \lambda^2 = 0.61 \lambda^2$$
 [B-2]

and

$$T_{A} = T_{BD} + T_{BS}$$
 [B-3]

B-4

Figure B-2 Jovian Magnetosphere Model

Figure B-3 Probe-to-Spacecraft Communications Range for the Nominal Jupiter Probe

The worst-case antenna noise temperature is shown in Figure B-4 and is the sum of radiation fluxes from the two sources (Equation [B-3]). The thermal disk brightness temperature is the upper limit curve of Figure B-1 from the new (1971) monograph. Results of the original study are also shown for comparison. The new curve is reduced by a factor of 6 at 1 GHz. The noise temperature contribution from the magnetosphere is a function of the spacecraft trajectory and the extent that the line-of-sight vector from the antenna to the probe intersects the magnetosphere model (Ref 7). Any periapsis radius greater than 3 $R_{\rm T}$ will penetrate the total

magnetosphere model boundary and the maximum path length in the volume without intersecting the planet disk is 5.7 $R_{_{\scriptsize T}}$ as seen in

Figure B-5. The maximum synchrotron temperature for trajectories that do not intersect the magnetosphere is given from Equation [B-1] for 5.7 $R_{_{\rm T}}$ by :

$$T_{BS} = 5.7 \times 0.45 \lambda^2 = 2.57 \lambda^2$$

[B-4]

with the wavelength in cm and the temperature in °K. Equation [B-4] is equal to the antenna temperature if the planet disk is not within the field of view of the antenna. The thermal disk temperature must be added to Equation [B-4] if the planet disk falls within the 3-dB beamwidth of the antenna.

The curve shown in Figure 8-4 was used for the spacecraft antenna noise temperature and is the worst-case condition for a mission with the spacecraft in the magnetosphere such as for the nominal Jupiter probe (Vol II, Section VB) and for the probe-dedicated Jupiter mission (Vol II, Section VC).

Figure B-4 Spacecraft Antenna Noise Temperature

Top View of Magnetosphere Model

Figure B-5 Jovian Magnetosphere Penetration Distance

B. SPACECRAFT RECEIVING SYSTEM TEMPERATURE

The noise temperature of the receiving system at the receiver output is determined by the sum of the spacecraft antenna noise temperature, T_Λ and receiver effective noise temperature (ENT),

T_R, as follows:

$$T_{S} = T_{\Delta} + T_{R}.$$
 [B-5]

As discussed in the previous section, the antenna noise temperature, as shown in Figure B-4, is the sum of thermal disk and synchrotron noise (Equation [B-3]). The two sources of radiation, the thermal disk brightness temperature and synchrotron radiation from the Jovian magnetosphere, are added directly to determine the total spacecraft antenna temperature. Synchrotron radiation is dependent upon the relative geometry of the magnetosphere and line-of-sight vector as seen in Figure B-5.

The ENT of solid-state receivers for the frequency range of interest is shown in Figure B-6. The curves depict the temperature and noise figure (with 290°K reference) for tunnel diode and transistor receivers based upon the 1972 state of the art. An average value, one decibel above the minimum curves shown, was used in the study. As seen in the figure, the average value falls along the germanium transistor values. Using the average curve, results in the receiver ENT increasing with increasing frequency, and is 4 dB at S-band. Receiver ENT and noise figure (NF) are related by

$$NF = 10 \log_{10} \left(1 + \frac{ENT}{T_R} \right)$$
 [B-6]

where

NF = receiver noise figure, dB

ENT = receiver effective noise temperature, T_R , $^{\circ}K$

 $T_r = ambient reference temperature, 290°K.$

The spacecraft antenna noise temperature of Figure B-4 is added to the average ENT from Figure B-6 to obtain the spacecraft receiving system temperature, as shown in Figure B-7. The decrease in antenna temperature with increasing frequency is compensated by the corresponding increase in receiver ENT resulting in a nearly constant system temperature of 1000°K from 1.5 GHz through S-band.

Figure B-6 1972 Noise Figure State of the Art for Tunnel Diodes and Transistor Amplifiers

Figure B-7 Spacecraft Receiving System Temperature

C. ATMOSPHERIC ATTENUATION

The second dominant factor to be considered along with receiving system temperature is atmospheric losses. As described in detail in Appendix A; these include atmospheric attenuation due to the atmospheric constituents including alouds, as well as defocusing losses resulting from ray bending and diffraction. Figure B-8 shows the Jovian atmosphere attenuation versus frequency for the cool/dense atmosphere. The curves are for different depths into the cool/dense atmosphere at mission completion. The nominal Jupiter probe trajectory is adjusted in lead time to give decreasing probe aspect angle: (ψ) versus descent time. Atmosphere absorption increases from the zenith value according to the relation

$$A_{T} = \frac{A_{z}}{\cos \psi} = A_{z} \sec \psi$$
 [B-7]

where

 $A_{z} = zenith attenuation, dB$

 A_T = atmosphere attenuation at path angle ψ , dB

 ψ = probe aspect angle, deg.

The aspect angle for the depths shown is approximately 5 deg. The results are less than 1% greater than the zenith value (sec 5°).

Figure B-8 End-of-Mission Attenuation for Jupiter Cool/Dense Atmosphere

D. FREQUENCY-DEPENDENT POWER REQUIREMENTS

Figure B-9 shows the relative effects on a communication link of the spacecraft receiving system temperature and atmospheric losses at a probe aspect angle of 5 deg for various descent depths as a function of frequency. The curves were obtained from the algebraic sum of Figures B-7 and B-8, with Figure B-7 converted to decibels with a reference frequency of 1 GHz. The relative power gain represents the additional link power gain required to overcome the combined effects of system temperature and atmospheric attenuation for other frequencies and penetration into the atmosphere. It is further assumed that the probe antenna gain is constant for all frequencies (constant beamwidth, variable size) and the spacecraft antenna diameter is constant (variable gain and beamwidth with frequency) such that the product of space loss and space antenna gain at any frequency of interest is constant.

The RF link computer program used in the study maintains constant probe and spacecraft antenna beamwidth and maximum gain (variable aperture size) as a function of frequency, so decreasing range will affect the relative power required. The relative power required for the nominal Jupiter probe is shown in Figure B-10 for the conditions noted on the figure. Space loss reduction and higher probe antenna gain resulting from decreasing aspect angle during descent, as seen in Figure B-11, considerably alters the shape of the curves from these shown in Figure B-9. As seen in Figure B-10, increasing frequencies above 400 MHz results in increasing relative power required to achieve a particular depth. Stated in another way, the lower frequencies are affected less by the variables in the RF link such as atmosphere loss, noise temperature, space loss, and probe antenna gain. The curves of Figure B-10 are for a trajectory optimized to 30 bars. Below 900 MHz, more power is required at entry than at a depth of 30 bars which result from trajectory optimization of range and probe aspect angle. Above 900 MHz, atmospheric loss, which is proportional to frequency, dominates and the worst-case power requirement occurs at the end of the mission (30 bars). Other various combinations can be determined from the curves in Figure B-10, keeping in mind that the probe antenna is size-limited for effective apertures equal to 22.85 cm (9 in.).

Figure B-9 Relative Required Power for the Nominal Jupiter Probe Descent with Constant S/C Antenna Diameter and Fixed Probe Antenna Gain

Figure B-10 Relative Power Required for Jovian Descent, Nominal Jupiter Probe

Conditions:
$$R_p = 2 R_J$$
 $T_L = 46 min$
$$R_{RJ} = 10^7 km$$
 EOM = 30 bars
$$\gamma_E = -20^\circ$$
 Cool/Dense Atmosphere

Figure B-11 Nominal Jupiter Probe Aspect Angle

For simple dipole structures, we set

$$\frac{\lambda}{2} = 22.85$$

and

 $\lambda = 45.7$ cm;

therefore

$$f = \frac{30}{\lambda} = 650 \text{ MHz}.$$

[B-8]

Therefore, the minimum operating frequency is 650 MHz because of probe antenna size limits, unless a complex phased array is considered. This is not practical because of the additional costs associated with array development.

E. REFERENCES

- 1. Jupiter Atmospheric Entry Mission Study Final Report, Vol III. Contract JPL 952811, Martin Marietta Corporation, Denver, Colorado, MCR-71-1 (III), April 1971, pp IV-106 through 112
- 2. C. M. Michaux, et al: Handbook of the Physical Properties of the Planet Jupiter. NASA SP-3031, 1967, pp 47-56, 60-62
- 3. The Planet Jupiter (1970). NASA Space Vehicle Design Criteria (Environment), NASA SP-8069, December 1971, pp 13-15
- 4. K. I. Kellermann: "Thermal Radio Emission from the Major Planets." Radio Science, Vol 5, No. 2, 1970, p 487
- 5. G. L. Berge: "An Interferometric Study of Jupiter's Decimeter Radio Emission." Astrophysics Journal, Vol 146, No. 3, 1966, p 767
- 6. N. J. Branson: "High Resolution Radio Observations of the Planet Jupiter." Royal Astronomical Society Monthly Notices, Vol 139, 1968, p 155
- 7. J. W. Davenport and D. A. DeWolf: Investigation of Line-of-Sight Propagation in Dense Atmosphere, Phase II. RCA Labs, Princeton, N. J. NASA CR-114288, July 1971, pp 24-34.

APPENDIX C

SPACECRAFT RECEIVER

E. A. Berkery

June 7, 1972

SPACECRAFT RECEIVER

The design of the spacecraft receiver is a function of the modulation technique, coding, Doppler uncertainty and Doppler rate. The modulation technique was selected for the purpose of evaluation rather than optimization. PSK modulation has been well studied for many applications and evaluated in the Jupiter atmospheric study.* Although PSK would provide the lowest power link, it is subject to phase disturbances in the planetary atmospheres which are largely unknown. Binary FSK modulation was therefore chosen as a less susceptible approach. This type of modulation has problem areas associated with acquisition and tracking. possibility of receiving and recording a broadband corresponding to the frequency uncertainty was considered and discarded because of the large storage requirements on the spacecraft and the ultimate difficulty of demodulating and decoding the signal at the ground terminal. As a result, the principle efforts in the development of the spacecraft receiver configuration were directed at specifying and defining the method of tracking and acquisition. The final approach by which the data is relayed to the ground terminal may select one of several alternatives, recording a narrow pre-demodulation bandwidth or demodulation with or without decoding. A full evaluation of these alternatives involves basic communication research, is also influenced by spacecraft capability, and is considered beyond the scope of this contract.

A. ACQUISITION

The problem of acquisition was initially studied with the intent to acquire and track the data tones. First approaches considered methods for combining the two data signals, both before and after demodulation. The former was considered in systems that used a beat oscillator frequency midway between the two data tones, and two beat oscillator frequencies located at equal frequency distances from the two tones. These predetection combination methods would make maximum use of the received signal but had been discarded because of difficulty in establishing that phase coherency of the summed output signals could be achieved. Tracking and

^{*}Jupiter Atmospheric Entry Mission Study Final Report, Vol III. Contract JPL 952811, Martin Marietta Aerospace, Denver, Colorado, MCR-71-1 (III), April 1971. pp IV-27 through IV-34.

acquisition of combined post detection signals had to be discarded because of insufficient signal-to-noise ratio. This approach is further compromised by the use of coding, which decreases signal power and increases bandwidth. There is an obvious tradeoff for this approach as the data rate decreases, uncoded data would provide sufficient power density in a narrow band to allow acquisition and tracking of the data signal. Also, since many of the probe missions require RF power outputs that are well below the present state-of-the-art capability, increasing the power could decrease the complexity of the spacecraft receiver as compared with the approach selected in this study. It is reasonable to consider that a flight design will provide excess margin whereever possible rather than the minimum power required by the analysis of the mission. In view of the above considerations, a link that provided a constant tone signal in addition to the binary FSK tones was finally selected as a realizable system.

The basis of the evaluation is given here and is derived directly from NASA CR-73005, Appendix G. This paper considers the acquisition of a signal, with frequency changing linearly with time, and having 99% probability of acquisition and 1% probability of false alarm. Although the reference considers a data signal, the analysis is based on a tone and is therefore appropriate to the analysis of a binary FSK system with a tracking and acquisition tone. The results of the analysis are summarized in the following equations.

$$\left(\frac{S}{N_o}\right)_a \ge 4.66 \sqrt{R} + 10.86 \frac{R}{B}$$

$$\left(\frac{S}{N}\right)_{a} \geq 1$$

$$\left(\frac{\mathbf{S}}{\mathbf{N}}\right)_{\mathbf{T}} \geq 10$$

R = frequency rate of change, Hertz/sec

B = filter bandwidth

N = noise power spectral density

N = noise in bandwidth = BN

^{*}S. Georgiev: A Feasibility Study of an Experiment for Determining the Properties of the Mars Atmosphere. Final Report, Vol III, Subsystem and Technical Analysis. Contract NAS2-2970, Avco Corporation, Lowell, Mass. NASA CR-73005, Appendix G, September 1966.

Subscripts

a = acquisition

T = tracking

The first equation has been somewhat modified from the original (Eq [G-72] in Appendix G) for application to the probe acquisition problem. These equations are plotted in Figure C-1. A 20dB signal-to-noise ratio line, which is pertinent to the receiver configuration and the data power for a nominal Jupiter probe design (Vol II Section V.B) is also plotted for completeness. original goal in this design was to achieve acquisition in 100 seconds with the probabilities previously stated, and minimum acquisition and tracking tone power. The acquisition technique used here is to sweep the local oscillator with a sawtooth wayeform so that the combination of sweep rate and maximum Doppler rate provides a rate of change equal to selected rate R. Initial acquisition takes place in a wide band filter/detector $[(S/N)_2]$ 0 dB]. The sweep rate is then decreased and final acquisition takes place in a narrow band filter $[(S/N)] \ge 13$ dB]. The frequency tracking loop [(S/N) > 10 dB] is then activated and tracking ensues. Since the center frequency of the narrow band filter will be the same as that of the tracking filter, acquisition and lock by the tracking loop is assured. As an example,

 $\Delta f = 40 \text{ kHz}$ (frequency uncertainty)

 $T_a = 100 \text{ sec (acquisition time)}$

Then $R = \Delta f / T_a = 400 \text{ Hz/sec}$

Ba = 120 Hz, P/N_{O} = 130 (R = 400 Hz/sec, S/N = 0 dB).

Subsequent to initial acquisition, the sweep rate is reduced to a lower value (i.e., 100 Hz/sec) and acquisition may take place in the narrow band filter (S/N = 13 dB) in t \leq 1.2 seconds. The configuration of the resulting receiver is illustrated in Figure C-2. It should be noted that the P/N value plotted in Figure C-1 will be that appearing on the RF bus at the input to all the BPFs in Figure C-2. Since the P_D/N value is that required by the data receiver and is determined by the E_b/N figure of merit

Figure C-1 Acquisition Bandwidth and Power

Figure C-2 Acquisition/Tracking/Data/Spacecraft Receiver

and fixed adverse tolerances, $P_{\mathrm{D}}/N_{\mathrm{o}}$ is a function of the data rate which remains relatively constant for the Jupiter, Saturn, and Uranus missions. Consequently, for equal uncertainty bandwidth sweep rates, acquisition and tracking tone power is equal to approximately 50% of the data power (i.e., 1.75 dB increase in transmitter power). The tracking loop frequency uncertainty has some influence on the power in the tracking tone, since this establishes the predetection bandwidth in the tracking loop. worst case considered was a Jupiter mission with a data link RF frequency of 2.3 GHz. The effect of the Doppler rate was to produce a maximum frequency deviation of -7.5 Hz as is demonstrated here. Although this loop stress will be relieved somewhat by a preprogrammed frequency shift in the tracking loop, a 15 Hz bandwidth was selected for the tracking loop BPF for all mission. This has the effect of fixing the received tone power at P/N = 150 and R(Max) = 400 for all missions. The effect of differing uncertainty bandwidth/frequency is to change the acquisition time. Some transmission power reduction can, in general, be achieved by decreasing the tracking BPF bandwidth and increasing acquisition time; however, approximately 1.0 dB is the maximum improvement that should be expected.

The characteristics of the BPFs of Figure C-2 in the frequency domain are shown in Figure C-3. The figure is not to scale for purposes of illustration. The IF frequency bandwidth is approximately equal to the total possible variation from nominal of the received probe frequency. The data BPFs bandwidth are of the order of the bit rate plus frequency tracking deviation. high rate acquisition filters (A/U, A/L) may overlap slightly to provide logic signals during tracking. The narrow band acquisition filter (A/A) is located at the junction of the two wideband filters. The tracking filter is located symmetrically with respect to the narrow-band acquisition filter. The local oscillator frequency will be swept from low to high frequency so that the difference (IF) frequency will sweep from high to low frequency. Under these circumstances, the upper acquisition BPF will detect the probe signal first and will not be perturbed by data signals. When the search logic registers a wide-band, (A_{II}) acquisition, it will decrease the sweep rate to enable acquisition Once acuqisition is achieved in narrow in the narrow band (A_A) . band, the sweep is discontinued and the tracking loop is enabled.

Figure C-3 Receiver Bandpass Characteristics

In the event that the narrow band does not acquire, the lower wide $(A_{T,\cdot})$ will register acquisition within a fraction of a second (i.e., broad-band acquisition response time is approximately 0.3 sec) after the signal moves into the lower bandpass. The search logic will respond to acquisition of the signal in $\boldsymbol{A}_{\boldsymbol{T}_{.}}$ and loss of acquisition in $\boldsymbol{A}_{\boldsymbol{\mathsf{II}}}$ by reversing the slow sweep rate and driving the signal higher in frequency and back into the narrow bandpass, A. This logic is illustrated in Table C-1. The first six lines have been discussed. The last two lines could conceivably occur because of variations in signal strength and degrees of overlap of the BPFs. Loss of signal could occur due to a noise burst or a system transient. It may be desirable to include some time delay between logic transitions for this type of disturbance. The analysis of the detection probabilities uses integrate and dump configurations. The acquisition circuitry should therefore continuously sample (time = t), store, sum, and dump samples acquired at previous times which are in excess of the design hold period (1). The output of the circuitry would then be

$$E_{o} = \int_{t-\tau}^{t} e dt$$

Since the analysis is also based on threshold levels, the gain of the wide band IF amplifier may be controlled by its own noise output which should predominate. No problem is anticipated if the probe signal is strong enough to affect the gain control. The condition to be achieved is to maintain the noise level in the absence of signal below the desired threshold. In the presence of a strong signal, it is advantageous to depress the gain further and avoid excessive clipping with resultant signal-to-noise ratio loss.

Table C-1 Search and Acquisition Logic

A _L	AA	A _U	Logic State
0	0	0	Sweep Down/High Rate
1	0	0	Sweep Up/Low Rate
1	1	0	Frequency Hold/Enable Track
1	1	1	Frequency Hold/Enable Track
0	1	1	Frequency Hold/Enable Track
0	0	1	Sweep Down/Low Rate
0	1	0	Maintain Previous State
1	0	1	Maintain Previous State

B. TRACKING

The tracking loop and its equivalent servo loop are shown in Figure C-4. The evaluation of this loop follows.

Open loop gain

$$\frac{W_{o}(S)}{W_{i}(S)} = K_{D} K_{V} B_{n}(S) B_{t}(S)$$
[C-1]

Let

$$K = K_D K_V$$

$$B_n(S) B_t(S) = \frac{S + X_1}{S(S + X_2)}$$
 [C-3]

where Equation [C-3] assumes a second order loop and implies

A. a. AFL Loop Configuration

b. Equivalent Servo of AFC Loop

Figure: C-4 AFC Loop

The problem consists of selecting loop parameters such that the tracking error due to Doppler rate is acceptable. It is assumed that acquisition has already been achieved. The input is assumed to be a ramp in frequency with slope equivalent to the maximum Doppler rate.

$$W_{i}(S) = \frac{\dot{W}_{d}}{S^{2}}$$
 [C-5]

The closed loop gain is

$$\frac{W_{o}(S)}{W_{i}(S)} = \frac{K(S + X_{1})}{S(S + X_{2}) + K(S + X_{1})}$$

$$\frac{W_{o}(S)}{W_{i}(S)} = \frac{\frac{1}{X_{1}}(S + X_{1})}{\frac{S^{2}}{KX_{1}} + \left(\frac{K + X_{2}}{K X_{1}}\right)S + 1}$$

Denominator analysis

$$\frac{S^2}{X_n^2} + \frac{2\zeta}{X_n} S + 1 = \frac{S^2}{K X_1} + \left(\frac{K + X_2}{K X_1}\right) S + 1$$

$$X_n^2 = KX_1 = Closed loop bandwidth$$

$$= \frac{X}{2} \left(\frac{K + X_2}{K X_1} \right) = Damping Coefficient$$

Steady-State error

$$\Delta W_{SS} = \lim_{S \to 0} S [\Delta W(S)]$$

$$\Delta W(S) = W_{i}(S) - W_{o}(S)$$

and

$$\Delta W_{SS} = \lim_{S \to 0} S \left[\frac{\dot{W}_{D}}{s^2} \frac{S(S + X_2)}{S(S + X_2) + K(S + X_1)} \right]$$

$$\Delta W_{SS} = \frac{\dot{W}_{D} X_2}{K X_1}$$

The selection of K, X_1 , X_2 , determines the dynamic transient characteristics and steady-state error. These factors in an optimum design would determine tracking filter bandwidth and tone power. It is sufficient here to select values that define a realizable system.

Hence, set K = 4
$$X_1 = 2.25 H_z X_2 = 0.25 H_z$$

Closed loop bandwidth = $KX_1 = 3 Hz$

W_D = 70 Hz (Alternate Jupiter Probe: 6 R_j, 0.86 GHz t = E-0: see Vol II, Section V.D)

$$\Delta W_{SS} = 1.95 H_z$$

Assuming a tone line bandwidth of 2 Hz, the expected frequency deviation subsequent to lock is,

$$W = \pm 3.95 Hz$$

The plus/minus sign tends to be conservative since the Doppler rate is always negative. From the above, if a factor of 1.9 is allowed for acquisition and noise transients, the tracking filter bandwidth becomes

$$(BPF)_{+} = 15 Hz$$

Although this mission is essentially a worst case, the same tracking bandwidth is used on all missions. It should be noted that the acquisition transient has not been evaluated. The factor of 1.9 is conservative and this initial transient can essentially be reduced by various acquisition logic approaches. With the design constants given above,

Damping coefficient $\zeta = 0.707$

Loop phase margin $\theta_m = 43^{\circ}$

The effect of noise on the system has not been evaluated. However, the link analysis allows

 $(S/N)_T = 10 \text{ dB}$

The noise will cause some additional deviation of the frequency which is considered to be well within the conservatism of the above design. A more rigorous evaluation of the effects of narrow band noise in the presence of signal, acquisition transient and transmitter frequency perturbations (line width) is indicated, but it is not expected that the results would change the above feasibility evaluation. For the purpose of evaluating the effects of frequency deviation on various missions:

Nominal Jupiter Probe	1.0 GH _z	W _D = 65 Hz	$\Delta W = 3.8 \text{ Hz}$	(See Vol II, Section V.B)
Spacecraft Radiation Compatible Alternate Probe	0.86 GHz	$W_D = 70 \text{ Hz}$	$\Delta W = 3.95 \text{ Hz}$	(See Vol II, Section V.D)
Saturn Probe			$\Delta W = 2.72 \text{ Hz}$	(See Vol II, Section VI.B)
Uranus Probe	0.86 GHz	$W_D = 21 Hz$	$\Delta W = 2.58 \text{ Hz}$	(See Vol II, Section VII.B)

APPENDIX D

MISSION ANTENNA ANALYSIS AND DESIGNS

R. E. Compton, Jr.

June 23, 1972

MISSION ANTENNA ANALYSIS AND DESIGN

Several types of antennas are required on the spacecraft and probe with axial and butterfly patterns to satisfy trajectory requirements. The contract did not specifically require detailed hardware designs but greater detail was required in order to perform mechanical design and configuration integration. Antenna sizes and weights were necessary in order to calculate mass properties and probe weights. The payload fairing also limits the size of a probe tracking dish to 1.5 m (60 in.) in order to fit within the payload envelope.

The probe spins about its longitudinal axis to maintain attitude stability. Therefore, circular polarization will allow the probe to rotate without the received energy being affected significantly by cross-polarization. A small loss does exist from pattern ellipticity and ripple. If linear polarization were used for the probe antenna, loss of 3 dB or more would be encountered depending upon the look vectors at the transmitting and receiving antennas and the extent of the respective aspect angle off boresight of the main beam patterns.

Several types of antennas were chosen for each application and a final type was based upon size, weight, polarization, side lobe level, maximum gain, and pattern shape. The designs described herein and used on the various missions are preliminary and subject to design refinements. The primary objective was to determine envelope size and weight. Such design details as feed techniques and the possibility of RF breakdown were not investigated in depth.

A. SPACECRAFT ANTENNAS

The antennas selected for the spacecraft are of two designs depending upon the required beamwidth. For a mission, such as shown in Figure D-1, the beamwidth requirements are small and a dish antenna provides an efficient design. For large beamwidths, such as shown in Figure D-2, a dish antenna becomes too inefficient at UHF and a low gain antenna such as a helix was selected. A conventional parabolic dish antenna, fed by a pair of crossed dipoles in a cup, and a helix antenna both provide the required circular polarization. The sense of polarization is not important as long as both transmitting and receiving antennas have the same sense; i.e., right-hand or left-hand circular patterns.

The spacecraft antenna platform must be despun on spacecraft such as Pioneer which is spin stabilized. Spacecraft such as TOPS, MOPS, or Mariner that are three-axis stabilized, do not require a despun platform. Despinning is required in order to maintain a fixed pointing direction of the antenna in space. As seen in Figures D-1 and D-2, relative probe motion is greater in cone angle than in clock or elevation (cross cone) angle. Elliptical patterns were not required to increase the gain. A circular pattern provides a more conservative design from the standpoint of compensating for position errors in the probe.

Parabolic dish antenna gain is based on an efficiency of 55% with a focal length (f/d) of 0.3 and uniform aperture illumination. The sidelobe level has maximum suppression under these conditions (>20 dB) and the subtended angle of the reflector is 159° . The maximum gain is calculated from

$$G_{\rm m} = 10 \log_{10} \left[0.55 \pi^2 \left(\frac{\mathrm{d}}{\lambda} \right)^2 \right]$$
 [D-1]

where

 G_{m} = maximum dish gain, dB

d = dish diameter, cm

 λ = wavelength, 30/f, cm

f = operating frequency, GHz.

The half-power (-3 dB) beamwidth in degress is symmetrical in both the E and H planes and equal to

$$\theta_{hp} = 70 \frac{\lambda}{d}.$$
 [D-2]

Probe position dispersions, such as shown in Figure D-1, were used for each mission to determine minimum spacecraft antenna beamwidth. The launch vehicle payload fairing envelope restricts the stowed spacecraft antenna dish size to 1.5 m (60 in.) in order to clear the fairing. As seen from Equation [D-2], the dish diameter, d, is inversely proportional to the 3-dB beamwidth. A dish with this diameter at 0.86 GHz has a beamwidth of 17°. At 1 GHz the minimum beamwidth is 14°. Therefore, a size limitation was not necessary on the spacecraft dish antenna.

Figure D-1 Spacecraft Antenna Requirements for Jupiter Mission Point Design 8

Note: Typical Broadbeam Antenna Requirement Δ = Nominal Position

Figure D-2 Spacecraft Antenna Requirements for the Jupiter Probe Dedicated Mission

A parabolic dish provides a compact design with circular polarization up to approximately 30° at 1 GHz, and for larger beamwidths the dish diameter is less than 0.75m (2.5 ft) and the feed mechanism becomes a problem in size (aperture blockage) and efficiency. For this reason, a helix was selected for large beamwidths. Helical antennas are commonly used on spacecraft for low gain applications requiring circular polarization. For a beamwidth of 30° at 1 GHz, a 13-turn helix is required that is 3 λ (0.9 m) long. Larger beamwidths are smaller in length for a fixed frequency so the payload fairing size limitation is not a problem because of excessive length.

An optimum design for an axial mode helix has a circumference equal to the wavelength and a slant angle on the loops of 12.5°. Under chese conditions, the maximum gain is equal to

$$G_{m} = 12 L_{\lambda} G_{\lambda}^{2} = 12L_{\lambda}$$
 [D-3]

where:

 G_{m} = maximum gain ratio

C, = 1, circumference in wavelengths

 $\alpha = 12.5^{\circ}$, loop slant angle

 L_{λ} = axial length in wavelengths = n S_{λ}

n = number of turns

 $S_{\lambda} = 1$ oop spacing in wavelengths.

The half-power beamwidth, in degrees, is symmetrical in both planes and, for C_{λ} = 1, equal to

$$\theta_{\rm hp} = \frac{52}{C_{\lambda} \sqrt{L_{\lambda}}} = \frac{52}{\sqrt{L_{\lambda}}}$$
 [D-4]

These relationships are depicted in graphical form in Figure D-3. The circumference may be varied between 0.8 and 1.2 λ . For larger diameters with a given beamwidth, the length and number of turns are reduced, as seen in Figure D-3. A value of one C_{λ} results in an optimum ratio of diameter to length, D/L.

Figure D-3 Axial Mode Helical Antenna Parameters

Beamwidths on the order of 50° to 60° result in 5 turns or less, and an axial length less than λ (30 cm for 1 GHz). As seen, the helical antenna provides a compact design for low-gain applications (Ref D-1).

2. Probe Entry Antenna

Probe aspect angle during acquisition and initial descent is typically on the order of 50° to 60°. Dispersions in the angle are usually small, which result in small beamwidths requirements.

Since the probe is spin stabilized, a butterfly antenna pattern is required. For the original higher frequencies anticipated, a four-arm equiangular spiral on a cone was selected. The truncated cone length is 0.9 λ and base diameter is 0.75 λ . 0.86 GHz, the cone dimensions become excessive and another design was considered. An annular slot antenna was selected to be used at this frequency. It is 43 cm (17 in.) in diameter and only 1.9 cm (0.75 in.) thick, and is placed under the deflection motor. The main drawback to this design is that the antenna is linearly polarized and cross-polarization loss is 3 dB with a circularly polarized spacecraft antenna. Annular slot antennas are very popular for airborne use in communications, and provide a butterfly pattern that is adjustable to a small degree by variations in design parameters. Printed circuit feed techniques are common. The annular slot entry antenna for 0.86 GHz is shown in Figure D-4 (Ref D-2).

3. Probe Descent Antenna

The descent antenna on the probe is also of two designs depending on the mission and frequency. For 1 GHz, a crossed dipole in a cup was chosen. For circular polarization, the dipoles are unequal in length. The longest dipole is 18.75 cm (7.4 in.) long. The antenna is 7.6 cm (3 in.) deep. This configuration fits into the probe baseplate.

For the Jupiter parametric studies, the frequency was lowered to 0.86 GHz and the antenna increased in size to 21.8 by 8.84 cm (8.6 by 3.5 in.) and could not be placed on the probe because of structural interference. Another design was selected that is more compact and provides circular polarization with the required pattern.

Figure D-4 Annular Slot Entry Antenna

The crossed dipole in a cup was replaced with a modification developed by Martin Marietta for the Viking Program. It is a turnstile design over a flared cone. The Viking model is shown in Figure D-5. The large baseplate seen in the figure is required on the Viking Lander to reduce backlobes and is not needed for the probe mission. For circular polarization, the turnstile arms are unequal by $\lambda/4$. The antenna shown in the figure has linear polarization and operates at 1 GHz. For the probe descent antenna at 0.86 GHz, the same design techniques would be employed as are being used by Martin Marietta to develop this antenna for the Viking Program.

The antenna generates an axial beam pattern with a broad beamwidth and good circularity. A typical pattern is shown in Figure D-6 for linear polarization at 1.75 GHz. The gain/beamwidth relationship is varied by adjusting the dipole flare angle and height above the cone. Design details of the antenna are shown in Figure D-7 for 0.86 GHz and circular polarization. The height and 30° flare angle are preliminary values and are typical for a beamwidth of 100° with a maximum on-axis gain of 5.5 dB.

4. References

- D-1 J. D. Krans: Antennas. McGraw-Hill, 1950, pp 173 through 216.
- D-2 H. Jasik: Antenna Engineering Handbook. McGraw-Hill, 1961, pp 8-8 and 27-34 through 27-36.

Figure D-5 Turnstile/Cone Descent Antenna

Linear Source

Figure D-6 Turnstile/Cone Antenna Pattern

Figure D-7 Survivable Probe Turnstile/Cone Descent Anterna

APPENDIX E

SUMMARY OF PLANETARY ATMOSPHERES AND RELATED CONSTRAINTS

D. Cross and R. Fischer

June 8, 1972

SUMMARY OF PLANETARY ATMOSPHERES AND RELATED CONSTRAINTS

The data compiled in this appendix summarizes the pertinent information to be used in modeling the atmospheres of Jupiter, Saturn, Uranus, and Neptune. As far as possible, these data are a duplication of the information provided by References 1, 2, and 3 and were calculated in order to provide a more extensive table (5 km print interval) for use in various analyses. These tables of the atmospheres are presented in Sections B through G. Slight differences arise between the references and the atmospheric tables because of slight variations in the equations which are used to extend the atmosphere from a pressure of one atmosphere at zero altitude. The data presented in the tables given represent the best compromise that yields a good planet atmosphere description. Section G is a summary of these differences.

Section A presents parameters and constants related to the planets and their atmosphers.

A tabular description of the cool-dense Jupiter atmosphere is given in Section B.

Section C presents a tabular description of the nominal Jupiter atmosphere.

The nominal Saturn atmosphere description is tabulated in Section D.

Section E presents a tabular description of the nominal Uranus atmosphere.

A tabular description of the nominal Neptune atmosphere is given in Section F.

Section G presents a comparison of models described in Sections B through F with the models described in the references.

It should be noted that probe entries into the various planetary atmospheres may be at high latitudes, possibly even polar entries. Significant differences in entry radius and entry velocity occur between a polar and an equatorial entry for each of the planets considered, since each planet is oblate. These parameters are defined in Section A.

Two gravitational constants will be used to simulate the probe trajectory. Before entry, an "ephemeris" (μ) will be used to compute the position and velocity as a function of time. After the entry point is reached, a slightly different constant, the "atmospheric" μ will be used to simulate the trajectory within the atmosphere of the planet. The atmospheric μ to be used will be consistent with the specified values for gravitational acceleration (g_0) at the reference radius (r_0). The result of changing the value of μ at entry does not materially affect the descent trajectory of the probe. The two values of μ are given in Section A for each planetary atmosphere.

The molecular weight, grams/mole of the atmospheres of Jupiter and Saturn are a constant value (independent of altitude), and are given in Section A, Table E-2. The molecular weight of the nominal atmospheric models of Uranus and Saturn are variable with a altitude, and are listed in Sections E and F, respectively.

PLANETARY CONSTANTS AND ATMOSPHERIC COMPOSITION PARAMETERS FOR JUPITER, SATURN, URANUS, AND NEPTUNE

This section lists a large number of parameters which are required to define each of the planets physical characteristics and their atmospheres. They are summarized here for reference:

Table E-1 lists the planetary constants of each of the planets (Jupiter, Saturn, Uranus, and Neptune)

Table E-2 lists the compositions and other parameters for model atmospheres of Jupiter, Saturn, Uranus, and Neptune.

Table E-3 summarizes the constants and conversion factors which are related to the study of the planets and their atmospheres.

Entry trajectory studies have indicated that differences between gravitational constant (μ) for planet ephemeris (Table E-1) and (μ) for atmospheres (consistent with given reference radius (r_0) and given reference acceleration of gravity (g_0) makes no significant difference in max g or dynamic pressure values, or altitude of occurrance for γ = -20° and greater. Also, at an altitude where Mach = 1.0 occurs, no difference is noted. However, the altitude of Mach = 0.5 shows a noticeable difference of 1.5 km, or 4%.

Table E-1 Planetary Constants

	JUPITER	SATURN	URANUS	NEPTURN	SYMBOL
Equatorial Radius, km (P = 1 atm)	71422 ± 200	59800 ± 350	26468 ± 1000	24857 ± 200	æ
Polar Radius, km (P = 1 atm)	66815 ± 200	53500 ± 350	25674 ± 1000	24360 ± 200	Rolar
Flattening (ε) (Optical)	0.0645	0.10535	0.03 ± 0.03	0.02 ± 0.02	, ₃
Entry Radius, km (equatorial entry)	71726.9	60291.4	27000 ± 1000	25200 ± 200	Re
Entry Altitude, km	304.9	491.4	532	343	he
$(\mu_{sun} = 1.32712499 \times 10^{11} \text{ km}^3/\text{sec}^2)$					
Reciprocal Mass	1047.391	3498.70	22930.0	19260,0	
Gravitational Constant (km^3/sec^2) (used with flyby trajectory calculation)	126707718.8	37932000.	5787723.5	6890576.3	a
Acceleration of Gravity (go) at Ro (cm/sec ²)	2500 (Nominal) 2700 (Cool)		3	(M) 0011	
	2300 (Warm)	1050 (Nom)	810 (Nom) 018	TION (NOM.)	080
Gravitational Constant (Consistent	127,527,552.1 (N)	37,548,420.(N)	5,674,449.57 (A	5,674,449.57 ^(M) 6796574,94 (N)	
אזרוו ובדבנבוורב צס מווח מס)	117,325,348. (W)	(Ro = 59800)	(Ro = 26468)	(Ro = 24857)	μa
Period of Rotation	9h55m29a73	10 ^h 26 ^m ±14 ^m	10,816667 ^h	$12^{\mathrm{h}43^{\mathrm{m}}}$	۲
			10 ^h 49 ^m		
Angular Rotation Rate (Rad/Sec)	1.75853x10 ⁻⁴	1.67 x 10 ⁻⁴	1.613 x 10"4	1.372 x 10 ⁻⁴	3
Inclination of Orbit Plane to Ecliptic Plane	1.30631°	2.49°	0.77255°	1,77327°	
Inclination of Equatorial Plane to Orbit Plane	3.102	26.7°	97.884°	29°	
Mean Distance From Sun (AU)	5.202803	9.5388	19.181951	30.057779	
Period of Revolution about Sun (Years)	11.862	29.45772	84.01331	164,79342	
Orbital Velocity (km/s)	13.1	9.7	6.8	5.4	
Orbit Eccentricity	0.048435	0.055682	0.047209	0,008575	
Escape Velocity (km/sec)	9.0 ∓ 9.65	37	22	25	
Mean Density (g/cm^3)	1.32 ± 0.01	69.0	1.56	2,27	ď
(8) (5-10-10-10-10-10-10-10-10-10-10-10-10-10-					

Table E-2 Compositions and Other Parameters for Model Atmospheres of Jupiter, Saturn, Uranus, and Neptune

PARAMETER		JUPITER COOL MODEL	JUPITER NOMINAL MODEL	JUPITER WARM MODEL	SATURN NOMINAL	URANUS NOMINAL	NEPTUNE NOMINAL
Fractions by mass	Н2	0.50696	0.76348	0.87674	0.78514		
(or weight)	Нe	0.46000	0.23000	0.11500	0.19373		
	CH ₄	0.00857	0.00429	0.00214	0.00444		
	NH ₃	0.00219	0.00109	0.00055	0.00113		
	H ₂ O	0.01601	0.00800	0.00400	0.00828		
	Ne	0.00229	0.00115	0.00057	0.00120		
	Others	0.00398	0.00199	0.00100	0.00244		
Fractions by number	Н2	0.68454	0.86578	0.93754	0.88572	0.88572	0.85853
(or volume)	He	0.31057	0.13214	0.06149	0.11213	0.11000	0.11000
	CH ₄	0.00145	0.00062	0.00028	0.00063	0.03000	0.03000
	NH ₃	0.00035	0,00015	0.00007	0.00015	0.00015	0.00015
	H ₂ O	0.00240	0.00102	0.00048	0.00105	0.00100	0.00100
	Ne	0.00031	0.00013	0.00006	0.00013	0.00013	0.00013
	Others	0.00038	0.00016	0.00008	0,00019	0.00019	0.00019
Mean molecular weight, u, grams/mole	MWT	2.70	2,30	2.14	2.27	2,68 to -2,23	2,68 -2,25
Acceleration of Grav- ity, g, cm/sec ²		2700	2500	2300	1050	810	1100
Effective Temperature, t _o , °K		128	134	140	97		pt. pt., pt.
Troposphere lapse	βο	0,222	0,236	0.259	0.234	0.230	0.23
Rate Parameters	K ₁ (°K)	500	500	500	484	484	484
	K ₂ (°K)	500	295	324	282	282	282
Correspondence level							
Temperature, °K		125	125	125	95	84	57
Correspondence level							
Pressure, atm		0.50	0.30	0.20	0.30	1.0	1.0
Stratosphere temperatu	re, °K	108	113	118			
Stratosphere vertical (scale heights)	extent		1.0	1.0	2.0		
Inversion level Temper	ature, °K	(none)	145	500			
Inversion level pressu	re, atm	(none)	0.0065	2 x 10 ⁻⁷			
Ratio of Specific Heat	s, Y	1.467 (1.45±.15)	1,431 (1,45±,15)	1,418 1,45±.15	1.428	1.447	1.447
Tropopause Temperature	, °K	108	113	118	77	54	42
C _{pl} , Cal/mol C°		6.24632	6.60464	6,74651	6,64218	6,4448	6,4448

Table E-3 Constants and Conversion Factors

Heliocentric Gravitational Constant	$2,959122083 \times 10^{-44} \text{ AU/day}^2$
Heliocentric Gravitational Constant	$1.32712499 \times 10^{11} \text{ km}^3/\text{S}^2$
Measure of 1 AU in km	149597893,0 km
Velocity of Light, C	299792,5 km/s
Universal Gravitational Constant, G	$6.673 \times 10^{-23} \text{km}^3 \text{sec}^{-2} \text{g}^{-1}$
Feet to Meter	0.3048 (exactly)
Reciprocal Mass (Jupiter)	1047.3908 ± 0.0074
Reciprocal Mass (Saturn)	3499.2 ± 0.4
Reciprocal Mass (Uranus)	22930 ± 6
Reciprocal Mass (Neptune)	19260. ± 100
Universal Gas Constant, R	8.3143 Joules/mole C°
Universal Gas Constant, R	$8.3143 \times 10^7 \text{ ERGS/mole K}^{\circ}$
Universal Gas Constant, R	1.9868 Cal(15°) mole C°
1 Atmosphere of Pressure	$1.01325 \times 10^6 \text{ dynes/cm}^2$
1 Atmosphere of Pressure	$1.01325 \times 10^5 \text{ Newtons/m}^2$
1 Bar of Pressure	10^6 dynes/cm ² = 10^5 Newtons/m ²
Ballistic Coefficient of 1 slug/ft2	157.09 kg/m^2

Section B

Table 1-R356397

DATE 01/13/72.

JUPIT COOL DENSE JUPITER ATMOSPHERE, MEAN MOLECULAR MASS = 2.700 GRAMS/MOLE INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 71422.00 KM RADIUS
PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 1.37729756E+08 KM3/SEC2 GREF = 2.69999999E-02 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSU	IRF	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
71288.70	-133.300	405.300	269.870		1.007637E+02	
71293.70	-128.300	395.549	252.319	9.147804E+07		7.5102465-03
71298.70	-123.300	385.799	234.768	8.173483E+07	8.066600E+01	6.879933E-03
71303.70	-118.300	376.048	217.217		7.186804E+01	6.288495E-03
71308.70	-113.300	366.298	199.566	6.468255E+07	6.383672E+01	5.734438E-03
71313.70	-108.303	356.547	182.115	5.727179E+07		5.216289E-03
71318.70	-103.300	346.797	164.564	5.054015E+07	4.987925E+01	4.732597E-03
71323.70	-98.300	337.046	147.013	4.444177E+07		4.281934E-03
71328.70	-93.300	327.296	129.462	3.893271E+07	3.842360E+01	3.862891E-03
71333.70	-88.300	317.545	111.911	3.397096E+07		3.474086E-03
71334.80	-87.200	315.400	108.050	3.294881E+07	3.251794E+01	3.392470E-03
71337.50	-84.500	310.200	98.690	3.054155E+07	3.014216E+01	3.197329E-03
71338.70	-83.300	307.859	94.495	2.951684E+07	2.313085E+81	3.113448E-03
71343.70	-78.300	298.158	77.014	2.553219E+07		2.780867E-03
71347.90	-74.100	290.000	62.330	2.252083E+07	2.222633E+01	2.521880E-03
71348.70	-73.300	288.447	59.534	2.198010E+07	2.169268E+01	2.474585E-03
71353.70	-68.300	278.733	42.058	1.882578E+07	1.857960E+01	2.193285E-03
71358.20	-63.800	270.000	26.330	1.629962E+07	1.608647E+01	1.950432E-03
71358.70	-63.300	269.025	24.576	1.603616E+07	1.582646E+01	1.935732E-03
71363.70	-58.300	259.279	7.032	1.357974E+07	1.340216E+01	1.700835E-03
71368.70	-53.300	249.533	+10.511	1.142684E+87	1.127741E+01	1.487089E-03
71372.00	-50.000	243.100	-22.090	1.015859E+07	1.002575E+01	1.357021E-03
71373.70	-48.300	239.793	-28.043	9.549593E+06	9.424716E+00	1.293263E-03
71378.70	-43.300	230.056	-45.551	7.921832E+06	7.818241E+00	1.118180E-03
71383.70	-38.300	220.339	-63.060	6.518362E+06	6.433617E+00	9.607683E-04
71388.70	-33.300	210.512	-80.568	5.317501E+06	5.247956E+00	8.199034E-04
71393.70	-28.300	200.885	-98.077	4.296083E+06	4.239904E+00	6.944856E-04
71398.70	-23.300	191.158	-115.586	3.434415E+06		5.834428E-04
71401.30	-20.700	186.100	-124.690	3.043199E+06	3.003404E+00	5.310337E-04
71403.70	-18.300	181.415	-133.123		2.678243E+00	4.857707E-04
71408.70	-13.300	171.655	-150.691		2.088928E+00	4.004250E-04
71413.70	-8.300	161,895	-168.260		1.605807E+00	3.263742E-04
71415.90	-6.100	157.600	-175.990		1.423109E+00	2.971232E-04
71418.70	-3.300	152.144	-185.812	1.230534E+06	1.214442E+00	2.626503E-04
71419.80	- 2.200	150.000	-189.670		1.139325E+00	2.499259E-04
71422.00	0 •	145.800	-197.230		1.000000E+00	2.256821E-04
71423.70	1.700	142.513	-203.146		9.017654E-01	
71425.00	3.000	140.000	-207.670		8.318603E-01	1.955136E-04
71428.70	6.700	132.792	-220.644		6.557584E-01	
71432.70	10.700	125.000	-234.670	5.061550E+05	4.995362E-01	1.314957E-04
71433.70	11.700	123.058	-238.166	4.716185E+05	4.654512E-01	1.2445695-04
71438.70	16.700	113.348	-255.544	5.254538E+05	3.211980E-01	9.324298119
71439.60	17.600	111.600	-258.790	5.034122E+05	2.994446E-01	7 0022275-05
71441.40	19.400	108.000	-265.270	2.6289596+05	2.593693E=01	/ • 702227E=05
71443.70	21.700	109.000	-265.270	2.180658E+05	2.152142E-01	0.22072UE=U2
71448.70	26.700	103.000	-265.270	1.4535000+05	1.434493E-01	7 0505665 05
71453.10	31.100	108.000	-265.2 7 0	1.01/194E+05	1.003892E-01	3.0202005-02

TABLE 1-R356397

JUPIT

COOL DENSE JUPITER ATMOSPHERE,

MEAN MOLECULAR MASS = 2.700 GRAMS/MOLE

INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 71422.00 KM RADIUS

PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN:

ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 1.37729756E+08 KM3/SEC2

GREF = 2.69999999E-02 KM/SEC2

DADTUS	AL TITUDE	TEMDE	DATUDE	מחבכני	inc	2542774
RADIUS KM	ALTITUDE KM	KELVIN	RATURE FAHREN	PRESSU DYNE/CM2	ATMOSPHERES	DENSITY GM/CM3
71453.70	31.700	108.000	-265.270	_	9.562040E-02	
71458.70	36.700	108.000	-265.270	6.458683E+04	6.374224E-02	1.942040E-05
71463.70	41.700	108.000	-265.270	4.305716E+04	4.249411E-02	1.294672E-05
71469.00	46.000	108.000	-265.270	3.038228E+04	2.998498E-02	9.135549E-06
71468.70	46.700	103.000	-265.270	2.870592E+04	2.833054E-02	8.631490E-06
71473.70	51.700	108.000	-265.270	1.913913E+04	1.888885E-02	5.754883E-06
71478.70	56.700	108.000	-265,270	1.276138E+04	1.259450E-02	3.837177E-05
71481.50	59.500	108.000	-265.270	1.017032E+04	1.003732E-02	3.058080E-06
71483.70	61.700	103.000	-265.270	8.509372E+03	8.398097E-03	2.558656E-05
71488.70	66.700	108.000	-265.270	5.574428E+03		1.706225E-06
71493.70 71496.30	71.700	108.000 108.000	-265.270 -265.270	3.784176E+03	3.734691E-03	1.137852E-05
71498.70	74.300 76.700	103.000	-265.270			9.217241E-07
71503.70	81.700	103.000	-265.270		2.490741E-03 1.661219E-03	7.588561E-07 5.061251E-07
71508.70	86.700	103.000	-265.270		1.108026E=03	3.375832E-07
71509.90	87.900	108.000	-265.270		1.005410E-03	3.063191E-07
71513.70	91.700	108.000	-265.270		7.390904E-04	2.251793E-07
71518.70	96.700	103.000	-265.270		4.330259E-04	1.502106E-07
71523.70	101.700	108.000	-265.270	3.332500E+02	3.289020E-04	1.002069E-07
71524.70	102.700	108.000	-265.270	3.073445E+02	3.033254E-04	9.241442E-08
71528.70	106.700	103.000	-265.270	2.223333E+02	2.194259E-04	6.685268E-08
71533.70	111.700	103.000	-265.270	1.483373E+02	1.463975E-04	4.460307E-08
71538.30	116.300	108.000	-265.270		1.008932E-04	3.073921E-08
71538.70	116.700	103.000	-265.270	9.897395E+01	9.767970E-05	2.976016E-08
71543.70 71548.70	121.700	108.000	-265.270		6.517775E+05	1.985776E-08
71553.10	126.700 131.100	103.000	-265.270 -265.270	4.406924E+01 3.087146E+01	4.349296E-05 3.046776E+05	1.325104E-08 9.282639E-09
71553.70	131.700	103.000	-265.270	2.940897E+01	2.302439E-05	8.842837E+09
71558.70	136.700	108.000	-265.270	1.962675E+01	1.937010E-05	5.901505E-09
71563.70	141.700	103.000	-265.270	1.309311E+01	1.292781E-05	3.938729E-09
71566.60	144.600	108.000	-265.270	1.036099E+01	1.022550E-05	3.115411E-09
71568.70	146.700	108.000	-265.270	8.742981E+00	8.628651E-06	2.628899E-09
71573.70	151.700	103.000	-265.2 7 0	5.835820E+00	5.759506E-06	1.754754E-09
71578.70	156.700	108.000	-265.270	3.895549E+00	3.844608E-06	1.171340E-09
71581.50	159.500	108.000	-265.270	3.106568E+00	3.055944E-06	9.341039E-10
71583.70	161.700	103.000	-265.270	2.500519E+00		7.819418E-10
71588.70	156.700	108.000	-265.270	1.736105E+00	1.713402E-06	5.220238E-10
71593.70	171.700	103.000	-265.270	1.159088E+00	1.143931E-06	3.485224E-10
71595.00 71598.70	173.000 176.700	108.000	-265.270	1.043520E+00	1.029874E-06	3.137727E-10
71503.70	181.700	108.000 108.000	-265.270 -265.270	5.167384E+01	7.637737E-07 5.099811E-07	2.326996E-10 1.553764E-10
71608.70	185.700	103.000	-265.270	3.450520E-01	3.405399E-07	1.037526E-10
71609.80	187.800	108.000	-265.270		3.115920E-07	9.493301E-11
71613.70	191.700	108.000	-265.270	2.304215E-01		6.928470E-11
71614.80	192.800	103.000	-265.270		2.080799E-07	

TABLE 2-R356397

JUPIT DATE 01/13/72.

NOMINAL JUPITER ATMOSPHERE,

MEAN MOLECULAR MASS = 2.300 GRAMS/MOLE

INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 71422.00 K4 RADIUS

PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)

ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 1.27527552E+08 KM3/SEG2

GREF = 2.500000000E-02 KM/SEG2

RADIUS	ALTITUDE	TEMPER	ATURE	PRESSU	JRE	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	G4/C43
71139.20	-282.800	777.000	938,930	1.052698E+08	1.038932E+02	3.747874E-03
71144.20	-277.800	767.087	921.087	1.006233E+08	9.330745E+01	3.628739E-03
71149.20	-272.800	757.175	903.244	9.612599E+07	9.486898E+01	3.511938E-03
71154.20	-267.800	747.262	885.402	9.177499E+07	9.057487E+01	3.397454E-03
71159.20	-262.800	737.349	867.559	8.756732E+07	8.542223E+01	3.285269E-03
71164.20	-257.800	727.437	849.716	8.350007E+07	8.240816E+01	3.175366E-03
71169.20	-252.800	717.524	831.873	7.957032E+07	7.852930E+01	3.067728E-03
71174.20	-247.800	707.611	814.030	7.577521E+07	7.478432E+01	2.962337E-03
71179.20	-242.800	697.699	796.188	7.211187E+07	7.116889E+01	2.859177E-03
71184.20	-237.800	687.786	778.345	6.857748E+07	6.768071E+01	2.758229E-03
71189.20	-232.800	677.873	760.502	6.516922E+07	6.431702E+01	2.659476E-03
71194.20	-227.800	667.961	742.659	6.188431E+07	6.107507E+01	2.562901E-03
71199.20	-222.800	658.048	724.816	5.871998E+07	5.795212E+01	2.468485E-03
71204.20	-217.800	648.135	706.974	5.567351E+07	5.494548E+01	2.376211E-03
71209.20	-212.800	638.223	689.131	5.274216E+07	5.205246E+01	2.286061E-03
71214.20	-207.800	628.310	671.288	4.992325E+07	4.927042E+01	2.198017E-03
71219.20	-202.800	618.397	653.445	4.721412E+07	4.559671E+01	2.112061E-03
71224.20	-197.800	608.485	635.602	4.461211E+07	4.402873E+01	2.028174E-03
71229.20	-192.800	598.572	617.760	4.211461E+07	4.156389E+01	1.946339E-03
71234.20	-187.800	588.659	599.917	3.971902E+07	3.919963E+01	1.866537E-03
71239.20	-182.800	578.747	582.074	3.742278E+07	3.593341E+01	1.788750E-03
71244.20	-177.800	568.834	564.231	3.522332E+07	3.476272E+01	1.712959E-03
71249.20	-172.800	558.921	546.389	3.311814E+07	3.268506E+01	1.639145E-03
71253.70	-168.300	550.000	530.330	3.130201E+07	3.089269E+01	1.574388E-03
71254.20	-167.800	548.923	528.392	3.110472E+07	3.069797E+01	1.567533E-03
71259.20	-162.800	538.155	509.009	2.917884E+07		1.499901E-03
71264.20	-157.800	527.387	489.626	2.733711E+07	2.597963E+01	1.433922E-03
71269.20	-152.800	515.619	470.244	2.557744E+07	2.524297E+01	1.369586E-03
71274.20	-147.800	505.851	450.861		2.358525E+01	1.306384E-03
71279.20	-142.800	495.082	431.478		2.200442E+01	
71284.20	-137.800	484.314	412.096			1.186350E-03
71289.20	-132.800	473.546	392.713	1.931795E+07		1.128498E-03
71294.20	-127.800	462.778	373.330	1.793762E+07		1.972246E-03
71299.20	-122.800	452.010	353.948	1.662705E+07		1.017582E-03
71304.20	-117.800	441.242	334.565	1.538423E+07		9.644980E-04
71309.20	-112.800	430.473	315.182	1.420717E+07		3.129841E-04
71314.20	-107.800	419.705	295.800	1.309388E+07	1.292266E+01	8.630304E-04
71319.20	-102.800	408.937	276.417		1.188493E+01	8.146272E-04
71324.20	-97.800	398.169	257.034		1.090628E+01	7.677645E-04
71325.30	-96.700	395.800	252.770		1.069871E+01	7.576604E-04
71329.20	-92.800	387.774	238.324		9.985117E+00	7.217600E-04
71334.20	-87.800	377.485	219.803		9.120179E+00	
71339.20	-82.800	367.196	201.283		8.309439E+00	
71344.20	-77.800	356.907	182.762		7.550854E+00	
71349.20	-72.800	346.617	164.241		6.542445E+00	
71354.20	-67.800	335.328	145.721	5.204111E+06	6.182197E+00	0.15 22685 - 04

TABLE 2-R356397

JUPIT

NOMINAL JUPITER ATMOSPHERE,

MEAN MOLECULAR MASS = 2.300 GRAMS/MOLE

INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 71422.00 KM RADIUS

PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)

ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 1.27527552E+08 KM3/SEC2

ALTITUDE IS ABOVE 71422.0 KM RADIUS

GREF = 2.50000000E+02 KM/SEC2

GADTUS	AL TITUDE	75405	0.47110#			
RADIUS	ALTITUDE		RATURE	PRESSI		DENSITY
KM 74750 20	KM -62.800	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
71359.20		326.039	127.200		5.568155E+00	4.786970E-04
71364.20	-57.800	315.750	108.679		4.998382E+00	4.437163E-04
71369.20	-52.800	305.460	90.159	4.530202E+06		4.102654E-04
71374.20	-47.800	295.171	71.638	4.036794E+06	3.384006E+00	3.783249E-04
71379.20	-42.800	284.882	53.117	3.582497E+06	3.535650E+00	3.478750E-04
71384.20	-37.800	274.593	34.597	3.165447E+06	3.124053E+00	3.188955E-04
71385.80	-36.200	271.300	28.670	3.039556E+06		3.099292E-04
71389.00	-33.000	264.200	15.890	2.798190E+06	2.761599E+00	2.929858E-04
71389.20	-32.800	263.752	15.084	2.783553E+06	· · · · · · · · · · · · · · · · · · ·	2.919483E-04
71394.00	-28.000	253.000	-4.270	2.447633E+06	2.415626E+00	2.676258E-04
71394.20	-27.800	252.545	-5.088	2.434266E+06		2.666433E-04
71398.40	-23.600	243.000	-22.270		2.136467E+00	2.464386E-04
71399.20	-22.800	241.207	-25.498		2.088156E+00	2.426577E-04
71404.20	-17.800	230.000	-45.670	1.826809E+06	1.802920E+00	2.197189E-04
71404.20	-17.800	230.000	-45.670	1.826809E+06		2.197189E-04
71409.20	-12.800	218.532	-66.312	1.565623E+06	1.545149E+00	1.981865E-04
71414.20	-7.800	207.064	-86.954	1.330694E+06	1.313293E+00	1.777769E-04
71415.10	-6.900	205.000	-90.670		1.274204E+00	1.742223E-04
71419.20	-2.800	195.552	-107.676		1.105942E+00	1.585216E-04
71422.00	0.	189.100	-119.290		1.000000E+00	1.482270E-04
71424.20	2.200	183.919	-128.617	9.338718E+05	9.216598E-01	1.404636E-04
71429.20	7.200	172.143	-149-813	7.689789E+05	7.589231E-01	1.235743E-04
71434.20	12.200	160.367	-171.010	6.245586E+05	6.163914E-01	1.077361E-04
71439.20	17.200	148.591	-192.207	4.992894E+05	4.927604E-01	9.295288E-85
71440.30	18.300	146.000	-196.870	4.741687E+05	4.579681E-01	8.984257E-05
71443.20	21.200	139.000	-209-470	4.119369E+05	4.065501E-01	8.198192E-05
71444.20	22.200	136.586	-213.815	3.917836E+05	3.866604E-01	7.934902E-05
71446.10	24.100	132.000	-222.070		3.506382E-01	
71449.00	27.000	125.000	-234.670	3.039656E+05	2.999908E-01	6.726925E-05
71449.20	27.200	124.524	-235.527		2.966858E-01	
71451.10	29.100	120.000	-243.670	2.700035E+05	2.564727E-01	6.224296E-05
71453.90	31.900	113.000	-256.270		2.256866E-01	
71454.20	32.200	113.000	-256.270	2.245203E+05	2.215843E-01	
71459.20	37.200	113.000	-256.270		1.632188E-01	
71464.20	42.200	113.000	-256.270	1.218250E+05	1.202320E-01	2.982361E-05
71467.20	45.200	113.000	-256.270	1.014134E+05	1.000872E-01	2.482570E-05
71469.20	47.200	113.000	-256.270		8.857033E-02	
71470.30	48.300	113.000	-256.270		8.281133E-02	
71474.20	52.200	115.645	-251.509	6.629558E+04		1.585844E-05
71479.20	57.200	119.036	-245.406	4.939571E+04		1.147927E-05
71484.20	62.200	122.426	-239.302	3.711086E+04		8.385480E-06
71487.70	65.700	124.800	-235.030	3.052173E+04		6.765451E-06
71489.20	67.200	125.814	-233.204	2.810103E+04		6.178662E-06
71494.20	72.200	129.195	-227.119	2.143706E+04		4.590087E-06
71499.20	77.200	132.576	-221.033	1.646878E+04		3.436354E-06
71504.20	82.200	135.957	-214.947	1.273669E+04	1.257014E-02	2.591533E-06
71508.70	86.700	139.000	-209.470	1.U16186E+04	1.002898E-02	2.022370E-06

DATE 01/13/72.

JUPIT NOMINAL JUPITER ATMOSPHERE, MEAN MOLECULAR MASS = 2.300 GRAMS/MOLE INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 71422.00 KM RADIUS
PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 1.27527552E+08 KM3/SEC2 GREF = 2.50000000E-02 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSU	JRE	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
71509.20	87.200	139.341	-208.856	9.913083E+03	9.783452E-03	1.968032E-06
71514.20	92.200	142.750	-202.720		7.560928E-03	
71517.50	95.500	145.000	-198.670		6.539896E-03	
71519.20	97.200	145.000	-198.570		6.031875E-03	
71524.20	102.200	145.000	-198.670	4.818244E+03		
71529.20	107.200	145.000	-198.670		3.748922E-03	
71533.70	111.700	145.000	-198.670	3.066876E+03	· ·	
71534.20	112.200	145.000	-198.670		2.955665E-03	
71539.20	117.200	145.000	-198.670		2.330335E-03	
71544.20	122.200	145.000	-198.670		1.337367E-03	
71549.20	127.200	145.000	-198.670		1.448732E-03	
71554.20	132.200	145.000	-198.670		1.142337E-03	
71556.80	134.800	145.000	-198.670		1.009577E-03	
	-		-198.670		9.007728E-04	
71559.20	137.200	145.000	-198.670		7.103143E-04	
71564.20	142.200	145.000			5.501447E-04	
71569.20	147.200	145.000	-198.670			
71574.20	152.200	145.000	-198.670		4.417376E-04	
71579.20	157.200	145.000	-198.670		3.483717E-04	
71582.00	160.000	145.000	-198.670		3.050009E-04	
71584.20	162.200	145.000	-198.670		2.747488E-04	
71589.20	167.200	145.000	-198.670		2.166921E-04	
71594.20	172.200	145.000	-198.670	1.731735E+02		
71599.20	177.200	145.000	-198.670		1.348034E-04	
71604.20	182.200	145.000	-198.670	1.077378E+02		2.055428E+08
71605.10	183.100	145.000	-198.670		1.018836E-04	
71609.20	187.200	145.000	-198.670	_	8.387189E-05	1.621314E-08
71614.20	192.200	145.000	-198.670		6.516003E-05	
71619.20	197.200	145.000	-198.670		5.219025E-05	1.008882E-08
71624.20	202.200	145.000	-198.670		4.117157E-05	
71629.20	207.200	145.000	-198.670		3.248029E+05	
71630.30	208.300	145.000	-198.670		3.082952E-05	
71634.20	212.200	145.000	-198.670		2.562458E-05	
71639.20	217.200	145.000	-198.670		2.021659E-05	3.908037E-09
71644.20	222.200	145.000	-198.670	1.616181E+01	1.595047E-05	
71649.20	227.200	145.000	-198.670		1.258500E-05	2.432787E-09
71653.40	231.400	145.000	-198.670	1.045029E+01	1.031363E-05	1.993712E-09
71654.20	232.200	145.000	-198.570	1.006154E+01	9.929964E-06	1.919546E-09
71659.20	237.200	145.000	-198.670	7.939130E+00	7.835313E-06	1.514632E-09
71664.20	242.200	145.000	-198.570	6.264637E+00	6.182716E-06	1.195171E-09
71669.20	247.200	145.000	-198.670	4.943486E+00	4.878841E-06	9.431211E-10
71674.20	252.200	145.000	-198.670	3.901081E+00	3.850058E-06	7.442505E-10
71678.60	256.600	145.000	-198.670	3.167309E+00	3.125891E-06	6.042610E-10
71679.20	257.200	145.000	-198.670	3.078584E+00		5.873341E-10
71684.20	262.200	145.000	-198.670		2.397811E-06	4.635170E-10
71689.20	267.200	145.000	-198.670	1.917460E+00	1.892386E-06	3.658140E-10
71694.20	272.200	145.000	-198.670	1.513336E+00	1.493546E-06	2.887151E-10

TABLE 2-R356397

JUPIT

NOMINAL JUPITER ATMOSPHERE,

MEAN MOLECULAR MASS = 2.300 GRAMS/MOLE

INITIAL PRESSURE =1.0132505+06 DYNES/SQCM AT 71422.00 KM RADIUS

PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)

ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 1.27527552E+08 KM3/SEC2

GREF = 2.50000000E-02 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSU	JRE	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CH2	ATMOSPHERES	GM/CM3
71699.20	277.200	145.000	-198.570	1.194425E+00	1.178805E-06	2.278730E-10
71701.70	279.700	145.000	-198.670	1.061148E+00	1.047271E-06	2.024464E-10
71704.20	282.200	145.000	-198.670	9.427499E-01	9.304218E-07	1.798584E-10
71709.20	287.200	145.000	-198.670	7.441296E-01	7.343988E-07	1.419655E-10
71714.20	292.200	145.000	-198.670	5.873744E-01	5.796934E-07	1.120596E-10
71719.20	297.200	145.000	-198.670	4.636558E-01	4.575927E-07	8.845653E-11
71724.20	302.200	145.000	-198.670	3.660082E-01	3.512220E-07	6.982725E-11
71726.90	304.900	145.000	-198.670	3.221336E-01	3.179212E-07	6.145684E-11
71729.20	307.200	145.000	-198.670	2.889350E-01	2.851567E-07	5.512319E-11
71734.20	312.200	145.000	-198.670	2.280993E-01	2.251165E-07	4.351691E-11
71735.40	313.400	145.000	-198.670	2.155181E-01	2.126998E-07	4.111666E-11

TABLE 4-R356397

SATURN NOMINAL SATURN ATMOSPHERE,

MEAN MOLECULAR MASS = 2.270 GRAMS/MOLE

INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 59800.00 K4 RADIUS

PRINT INTERVAL = 10 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 3.75484200E+07 KM3/SEC2

DATE 01/13/72.

GREF = 1.05000000E-02 KM/SEC2

ALTITUDE IS ABOVE 59800.0 KM RADIUS

RADIUS	ALTITUDE	TEMPER	ATURE	PRESSU	JRE	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
59264.00	-536.000	617.300	652.370		1.039484E+02	4.6546475-03
59274.00	-526.000	609.412	637.271	1.004336E+08	9.912022E+01	4.499540E-03
59284.00	-516.000	601.024	622.173	9.570707E+07	9.445554E+01	4.347630E-03
59294.00	-506.000	592.536	607.074	9.114275E+07	8.395090E+01	4.198890E-03
59304.00	-496.000	584.247	591.975	8.673711E+07	8.560287E+01	4.053295E-03
59314.00	-486.000	575.859	576.877	8.248671E+07	8.140805E+01	3.910819E-03
59324.00	-476.000	567.471	561.778	7.838812E+07		3.771435E-03
59334.00	-466.000	559.083	546.680	7.443797E+07		3.635116E-03
59344.00	-456.000	550.695	531.581	7.063288E+07		3.501838E-03
59354.00	-446.000	542.307	516.482	6.696956E+07		3.371572E-03
59364.00	-436.000	533.919	501.384	6.344468E+07		3.244294E-03
59374.00	-426.000	525.531	486.285	6.005501E+07		3.119977E-03
59384.00	-416.000	517.142	471.186	5.679731E+07		2.998594E-03
59394.00	-406.000	508.754	456.088	5.366837E+07	5.296656E+01	2.880119E-03
59404.00	-396.000	500.366	440.989	5.066503E+07	5.000250E+01	2.764525E-03
59414.00	-386.000	491.978	425.891	4.778417E+07	4.715931E+01	2.651786E-03
59424.00	-376.000	483.590	410.792	4.502266E+07	4.443391E+01	2.541874E-03
59434.00	-366.000	475.202	395.693	4.237745E+07	4.182329E+01	2.434764E-03
59444.00	-356.000	466.814	380.595	3.984548E+07	3.932443E+01	2.330428E-03
59454.00	-346.000	459.426	365.496	3.742376E+07	3.593438E+01	2.228839E-03
59464.00	-336.000	450.037	350.397	3.510930E+07	3.465018E+01	2.129971E-03
59474.00	-326.000	441.649	335.299	3.289915E+07	3.246894E+01	2.033796E-03
59483.00	-317.000	434.100	321.710	3.099680E+07	3.059147E+01	1.949518E-03
59484.00	-316.000	433.222	320.130	3.079040E+07	3.038776E+01	1.940460E-03
59494.00	-306.000	424.445	304.331	2.877912E+07	2.340278E+01	1.851213E-03
59504.00	- 296.000	415.667	288.531	2.686189E+07	2.651062E+01	1.764374E-03
59514.00	-286.000	406.890	272.732	2.503611E+07	2.470872E+01	1.679925E-03
59524.00	-276.000	398.113	256.933	2.329920E+07	2.299452E+01	1.597847E-03
59534.00	-266.000	389.335	241.134	2.164859E+07	2.136550E+01	1.518120E-03
59544.00	-256.000	380.558	225.334	2.008175E+07	1.981915E+01	1.440725E-03
59554.00	-246.000	371.781	209.535	1.859617E+07	1.835299E+01	1.365642E-03
59564.00	-236.000	363.003	193.736	1.718934E+07	1.696456E+01	1.292852E-03
59574.00	-226.000	354.226	177.936	1.585880E+07	1.565142E+01	1.222335E-03
59584.00	-216.000	345.448	162.137	1.460211E+07	1.441116E+01	1.154071E-03
59594.00	-206.000	336.671	146.338	1.341684E+07	1.324140E+01	1.088040E-03
59604.00	-196.000	327.894	130.539	1.230061E+07	1.213976E+01	1.024221E-03
59614.00	-186.000	319.116	114.739	1.125102E+07	1.110390E+01	9.625943E-04
59624.00	-176.000	310.339	98.940	1.026575E+07	1.013150E+01	9.031388E-04
59624.50	-175.500	309.900	98.150	1.021813E+07	1.008451E+01	9.002227E-04
59634.00	-166.000	301.264	82.605	9.342036E+06	9.219873E+00	8.466326E-04
59644.00	-156.000	292.173	66.241	8.477192E+06	8.366338E+00	7.921593E-04
59654.00	-146.000	283.082	49.877		7.568795E+00	7.396590E-04
59661.90 E0664.00	-138.100	275.900	36.950	7.069400E+06		6.995697E-04
59664.00	-136.000 -436.000	273.971	33.478		6.325155E+00	6.891667E-04
59674.00	-126.000	264.787	16.946		6.133199E+00	6.407777E-04
59684.00	-116.000	255.602	.414		5.490838E+00	5.942789E-84
59690.10	-109.900	250.00 0	-9.670	5.1903/26+06	5.122499E+00	5.668376E-04

TABLE 4-R356397

SATURN
NOMINAL SATURN ATMOSPHERE,
MEAN MOLECULAR MASS = 2.270 GRAMS/MOLE
INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 59800.00 KM RADIUS
PRINT INTERVAL = 10 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 3.75484200E+07 KM3/SEC2
GREF = 1.05000000E-02 KM/SEC2

ALTITUDE IS ABOVE 59800.0 KM RADIUS

010740		TEMOS	2471125	2222	4 cm cm	
RADIUS KM	ALTITUDE KM		RATURE	PRESSU		DENSITY
59694.00	-106.000	KELVIN 246.372	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
59704.00	-96.000	237.070	-16.200	4.960931E+06		5.497584E-04
59711.60			-32.944	4.404293E+06	4.346699E+00	5.072245E-04
	-88.480	230.000	-45.670	4.010801E+06	3.958353E+00	4.761057E-04
59714.00	-86.000	227.703	-49.804	3.891672E+06	3.840781E+00	4.666238E-04
59724.00	-76.000	218.134	-67.029	3.420783E+06	3.376050E+00	4.2815635-04
59732.50	-67.500	210.000	-81.670	3.051861E+06	3.011953E+00	3.967762E-04
59734.00	-66.000	208.563	-84.256	2.989657E+06	2.350562E+00	3.913664E-D4
59744.00	-56.000	198.985	-101.496	2.596496E+06	2.562542E+00	3.562597E-04
59754.00	-46.000	189.407	-118.737	2.239516E+06	2.210231E+00	3.228177E-04
59764.00	-36.000	179.830	-135.977	1.916945E+06	1.891877E+00	2.910373E-04
59774.00	-26.000	170.252	-153.217	1.627013E+06	1.605737E+00	2.609155E-04
59784.00	-16.000	160.674	-170.457	1.367958E+06	1.350070E+00	2.324493E-04
59794.00	-6.000	151.096	-187.698	1.138023E+06	1.123141E+00	2.056358E-04
59794.10	-5.900	151.000	-187.870	1.135865E+06	1.121011E+00	2.053760E-04
59800.00	0.	145.200	-198.310	1.013250E+06	1.000000E+00	1.905242E-04
59804.00	4.000	141.226	-205.463	9.352829E+05	9.230525E-01	1.808123E-04
59814.00	14.000	131.292	-223.345	7.578077E+05	7.478981E-01	1.575878E-04
59815.30	15.300	130.000	-225.670	7.365062E+05	7.268751E-01	1.546797E-04
59824.00	24.000	121.174	-241.557	6.038788E+05	5.359821E-01	1.360633E-04
59834.00	34.000	111.029	-259.818	4.717923E+05	4.656228E-01	1.160151E-04
59844.00	44.000	100.884	-278.079	3.600081E+05	3.553004E-01	9.742938E-05
59849.80	49.800	95.000	-288.670	3.038629E+05	2.998894E-01	8.732815E-05
59854.00	54.800	90.630	-296.536	2.669479E+05	2.534571E-01	8.041822E-05
59864.00	64.000	80.225	-315.264	1.908953E+05	1.883991E-01	6.496559E-05
59867.10	67.100	77.000	-321.070	1.705298E+05	1.582998E-01	6.046579E-05
59874.00	74.000	77.000	-321.070	1.319766E+05	1.302508E-01	4.679575E-05
59881.10	81.100	77.000	-321.070	1.013898E+05	1.000640E-01	3.595040E-05
59884.00	84.000	77.000	-321.070	9.104025E+04	8.984974E-02	3.228069E-05
59894.00	94.000	77.000	-321.070	6.280926E+04	6.198792E-02	2.227066E-05
59904.00	104.000	77.000	-321.070	4.333789E+04	4.277117E-02	1.536658E-05
59913.40	113.400	77.000	-321.070	3.057949E+04	3.017961E-02	1.084276E-05
59914.00	114.000	77.000	-321.070	2.990650E+04	2.951542E-02	1.060413E-05
59920.80	120.800	77.000	-321.070	2.324058E+04	2.293666E-02	8.240552E-06
59924.00	124.000	77.329	-328.479	2.064557E+04	2.037559E-02	7.289321E-06
59934.00	134.000	78.355	-318.630	1.430775E+04	1.412065E-02	4.985431E-06
59943.20	143.200	79.300	-316.930	1.025498E+04	1.012088E-02	3.530709E-06
59944.00	144.000	79.380	-316.786	9.964174E+03	9.833875E-03	3.427139E-06
59954.00	154.000	80.377	-314.992	6.971871E+03	6.880702E-03	2.358201E-06
59964.00	164.000	81.374	-313.197	4.900277E+03	4.836197E-03	1.644128E-06
59974.00	174.000	82.371	-311.402	3.459451E+03	3.414213E-03	1.146656E-05
59977.30	177.300	82.700	-310.810	3.086876E+03	3.046510E-03	1.019093E-06
59984.00	184.000	83.385	-309.578	2.452861E+03	2.420785E-03	8.031332E-07
59994.00	194.000	84.406	-307.739	1.746642E+03	1.723802E-03	5.649757E-07
60004.00	204.000	85.428	-305.900	1.248987E+03	1.232654E-03	3.991706E-07
60009.60	209.600	86.000	-304.870	1.036994E+03		3.292136E-07
60014.00	214.000	86.441	-304.076	8.967849E+02		2.832486E-07

SATURN

DATE 01/13/72.

NOMINAL SATURN ATMOSPHERE,

MEAN MOLECULAR MASS = 2.270 GRAMS/MOLE

INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 59800.00 KM RADIUS

PRINT INTERVAL = 10 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN

ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 3.75484200E+07 KM3/SEC2

GREF = 1.05000000E+02 KM/SEC2

ALTITUDE IS ABOVE 59800.0 KM RADIUS

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSU	JRE	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
60024.00	224.000	87.444	-302.271	6.464431E+02	6.379897E-04	2.018371E-07
60034.00	234.000	88.447	-300.466	4.677782E+02	4.616612E-04	1.443973E-07
60044.00	244.000	83.449	-298.661	3.397659E+02	3.353228E-04	1.037058E-07
60046.50	246.500	89.700	-298.210	3.138449E+02	3.097408E-04	9.552627E-08
60054.00	254.000	90.469	-296.825	2.476983E+02	2.444592E-04	7.475190E-08
60064.00	264.000	91.495	-294.979	1.812415E+02	1.788714E-04	5.408303E-08
60074.00	274.000	92.521	-293.133	1.330912E+02	1.313508E-04	3.927457E-08
60081.60	281.600	93.300	-291.730	1.054987E+02	1.041191E-04	3.087206E-08
60084.00	284.000	93.540	-291.298	9.807594E+01	9.579343E-05	2.862631E-08
60094.00	294.000	94.540	-289.498	7.251700E+01	7.156871E-05	2.094230E-08
60104.00	304.000	95.540	-287.698	5.379476E+01	5.309130E-05	1.537287E-08
60114.00	314.000	96.540	-285.898	4.003441E+01	· · · · · · · · · · · · · · · · · · ·	1.132208E-08
60121.60	321.500	97.300	-284.530	3.205047E+01	3.163136E-05	8.993355E-09
60124.00	324.000	97.540	-284.098	2.988761E+01	2.949678E-05	8.365823E-09
60134.00	334.000	93.540	-282.298	2.238132E+01		6.201166E-09
60144.00	344.000	99.540	-280.498		1.659102E-05	4.610970E-09
60154.00	354.000	100.540	-278.698	1.266419E+01	1.249858E-05	3.439050E-09
60159.60	359.600	101.100	-277.690	1.082035E+01	1.067886E-05	
60164.00	364.000	101.546	-276.887	9.568069E+00	9.442950E-06	
60174.00	374.000	102.560	-275.062	7.249672E+00	7.154870E-06	1.929927E-09
60184.00	384.000	103.574	-273.237	5.508552E+00	5.436518E-06	1.452071E-09
60194.00	394.000	104.588	-271.412	4.197181E+00	4.142295E-06	1.095665E-09
60203.00	403.000	105.500	-269.770	3.293773E+00	3.250701E-06	8.523960E-10
60204.00	404.000	105.602	-269.587	3.206682E+00	3.164749E-06	
60214.00	414.000	105.619	-267.756	2.456470E+00	2.424348E-06	
60224.00	424.000	107.636	-265.926	1.886705E+00	1.862033E-06	4.785731E-10
60234.00	434.000	108.653	-264.095	1.452821E+00	1.433822E-06	3.650667E-10
60244.00	444.000	109.669	-262,265	1.121539E+00	1.106873E-06	
60244.30	444.300	109.700	-262.210	1.112908E+00		
60254.00	454.000	110.689	-260.431	8.679458E-01	8.565959E-07	
60264.00	464.000	111.708	-258.596	6.733292E-01		1.645678E-10
60274.00	474.000	112.727	-256.762		5.167535E-07	1.268157E-10
60284.00	484.000	113.746	-254.927		4.027865E-07	
60291.40	491.400	114.500	-253.570	3.399089E-01		8.105077E-11
60294.00	494.000	114.762	-253.099		3.146783E-07	
60304.00	504.000	115.768	-251.287		2.463958E-07	
60314.00	514.000	116.775	-249.475		1.333547E-07	
60324.00	524.000	117.782	-247.663	1.540746E-01		3.571517E-11
60334.00	534.000	118.789	-245.851		1.198385E-07	-
60336.10	536.100	119.000	-245.470	1.155343E-01	1.140235E-07	2.650722E-11

Section E

TABLE 5-R356397

URANUS
NOMINAL URANUS ATMOSPHERE,
MEAN MOLECULAR MASS = 2.680 GRAMS/MOLE
INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 26468.00 K4 RADIUS
PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 5.67444957E+06 KM3/SEC2
GREF = 8.09993416E-03 KM/SEC2

RADIUS	ALTITUDE	TEMPER	ATHE	PRESSU	105	DENCTEY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	DENSITY GM/CM3
26112.10	-355.900	382.300	228.470		1.101291E+02	
26117.10	-350.900	376.033	217.190	1.077119E+08	1.063033E+02	9.404984E-03
26122.10	-345.900	369.767	205.910	1.039095E+08	1.025507E+02	9.230296E-03 9.056109E-03
26127.10	-340.900	363.500	194.631			
	-335.900	357.234		1.001808E+08		
26132.10 26137.10	-330.900	350.967	183.351 172.071	9.652569E+07 9.294379E+07	9.526345E+01 9.172839E+01	8.709249E-03
26142.10	-325.900	344.701	160.791	8.943484E+07		
26147.10	-320.900	338.434	149.511		8.487401E+01	8.364426E-03
26152.10	-315.900	332.168	138.232		8.155417E+01	
26157.10	-310.900	325.901	126.952		7.830554E+01	
26162.10	-305.900	319.634	115.672		7.512784E+01	
26167.10	-300.900	313.368	104.392		7.202082E+01	
26172.10	-295.900	307.101	93.112		6.898420E+01	
26172.50	-295.500	306.600	92.210		6.874431E+01	
26177.10	-290.900	305.539	90.300	6.691352E+07		
26182.10	-285.900	304.386	88.225		6.320915E+01	
26187.10	-280.900	303.233	86.149	6.129357E+07		
26192.10	-275.900	302.080	84.074		5.788310E+01	
26197.10	-270.900	300.927	81.998	5.611210E+07		
26202.10	-265.900	299.774	79.923	5.367583E+07		
26207.10	-260.900	298.621	77.847	5.133750E+07		
26212.10	-255.900	297.468	75.772	4.909347E+07	4.845148E+01	
26217.10	-250.900	296.315	73.696	4.694024E+07		5.109098E-03
26222.10	-245.900	295.161	71.621	4.487443E+07	4.428762E+01	4.903189E-03
26222.80	-245.200	295.000	71.330	4.459201E+07		4.874977E-03
26227.10	-240.900	291.498	65.027	4.288581E+07	4.232500E+01	4.743638E-03
26232.10	-235.900	287.427	57.698	4.096061E+07		4.593565E-03
26237.10	-230.900	283.355	50.369	3.909743E+07	3.858616E+01	4.446321E-03
26242.10	-225.900	279.283	43.040	3.729505E+07	3.680735E+01	4.301887E-03
26247.10	-220.900	275.212	35.711	3.555228E+07	3.508737E+01	4.160245E-03
26252.10	-215.900	271.140	28.382	3.386792E+07	3.342504E+01	4.021377E-03
26253.50	-214.500	270.000	26.330	3.340661E+07	3.296976E+81	3.982989E-03
26257.10	-210.900	267.050	21.020	3.224026E+07	3.181866E+01	3.888885E-03
26260.70	-207.300	264.100	15.710	3.110193E+07	3.069522E+01	3.795974E-03
26262.10	-205.900	262.923	13.591	3.066677E+07	3.026575E+01	3.759565E-03
26267.10	-200.900	258.718	6.022	2.914698E+07	2.876583E+01	3.631121E-03
26272.10	-195.900	254.513	-1.547	2.768007E+07	2.731811E+01	3.505143E-03
26277.10	-190.900	250.308	-9.116	2.626499E+07	2.592153E+01	3.381621E-03
26282.10	-185.900	246.103	-16.685	2.490069E+07	2.457507E+01	3.260543E-03
26287.10	-180.900	241.898	-24.253	2.358613E+07	2.327770E+01	3.141897E-03
26292.10	-175.900	237.693	-31.822	2.232028E+07	2.202841E+01	3.025673E-03
26297.10	-170.900	233.488	-39.391		2.082617E+01	2.911857E-03
26302.10	-165.900	229.283	-46.960		1.966998E+01	
26307.10	-160.900	225.078	-54.529	1.880473E+07	1.855883E+01	2.691408E-03
26312.10	-155.900	220.874	-62.098	1.772350E+07		
26317.10	-150.900	216.669	-69.666	1.568588E+07	1.646769E+01	2.480457E-03

URANUS

NOMINAL URANUS ATMOSPHERE,

MEAN MOLECULAR MASS = 2.680 GRAMS/MOLE

INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 26468.00 KM RADIUS

PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 5.67444957E+06 KM3/SEC2

DATE 01/13/72.

GREF = 8.09993416E-03 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSI	105	DENCTTY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	DENSITY GM/CM3
26322.10	-145.900	212.464	-77.235		1.548572E+01	
26327.10	-140.900	208.259	-84.804	1.473756E+07		2.278912E-03
26332.10	-135.900	204.054	-92.373	1.382486E+07		
26337.10	-130.900	199.849	-99.942	1.295183E+07	1.278246E+01	
26342.10	-125.900	195.644	-107.511	1.211750E+07	1.195904E+01	1.994023E-03
26347.10	-120.900	191.439	-115.079	1.132089E+07	1.117285E+01	1.903660E=03
26352.10	-115.900	187.234	-122.548	1.056104E+07		1.815579E-03
26354.40	-113.600	185.300	-126.130	1.022359E+07	1.008990E+01	1.775824E+03
26357.10	-110.900	182.964	-130.335	9.836986E+06	9.708351E+00	1.729892E-03
26362.10	-105.900	178.638	-138.121	9.147702E+06	9.028080E+00	1.646547E-03
26367.10	-100.900	174.312	-145.908	8.492247E+06	8.381196E+00	1.565419E-03
26372.10	-95.900	169.987	-153.694	7.869692E+06	7.766782E+00	1.486497E-03
26377.10	-90.900	165.661	-161.481	7.279114E+06	7.183927E+00	1.409771E-03
26381.10	-86.900	162.200	-167.710	6.829060E+06	6.739758E+00	1.349963E-03
26382.10	-85.900	161.333	-169.271	6.719569E+06	6.631699E+00	1.335941E-03
26387.10	-80.900	155.995	-177.079	6.189227E+06	6.108292E+00	1.266852E-03
26389.40	-78.600	155.000	-180.670	5.954716E+06	5.876848E+00	1.235642E-03
26392.10	-75.900	152.611	-184.971	5.686955E+06	5.512589E+00	1.198851E-03
26397.10	-70.900	148.186	-192.935		5.144204E+00	1.132152E-03
26400.70	-67.300	145.000	-198.670	4.887394E+06	4.823483E+00	1.085283E-03
26402.10	-65.900	143.751	-200.918	4.764730E+06	4.702423E+00	1.067270E-03
26407.10	-60.900	139.290	-208.947	4.343318E+06	4.286521E+00	1.004146E-03
26412.10	-55.900	134.830	-216.976	3.947360E+06	3.895741E+00	9.429103E-04
26417.10	-50.900	130.369	-225.005	3.576068E+06	3.529305E+00	8.835620E-04
26422.10	-45.900	125.909	-233.034	3.228658E+06	3.186437E+00	8.261017E-04
25424.80	-43.200	123.500	-237.370	3.050709E+06	3.010816E+00	7.958584E-04
26427.10	-40.900	121.397	-241.155	2.904315E+06	2.866336E+00	7.708198E-04
26432.10	-35.900	115.825	-249.385	2.602078E+06	2.568051E+00	7.176875E-04
26437.10	-30.900	112.253	-257.614	2.321166E+06	2.290813E+00	6.663396E-04
26442.10	-25.900	107.682	-265.843	2.060838E+06	2.033889E+00	6.167820E-04
26447.10	-20.900	103.110	-274.072	1.820350E+06	1.796545E+00	5.690211E-04
26452.10	-15.900	98.538	-282.301	1.598957E+06	1.578048E+00	5.230639E-04
26457.10	-10.900	93.966	-290.530	1.395912E+06	1.377658E+00	4.789179E-04
26462.10	-5.900	89.395	-298.760	1.210466E+06	1.194638E+00	4.365916E-04
26467.10	900	84.823	-306.989	1.041867E+06	1.028243E+00	3.960940E-04
26468.00	0.	84.000	-308.470	1.013250E+06	1.000000E+00	3.889994E-04
26470.30	2.300	81.900	-312.250	9.424638E+05	9.301394E-01	3.710553E-04
26472.10	4.100	80.199	-315.312		8.777510E-01	3.573229E-04
26477.10	9.100	75.473	-323.819		7.424269E-01	3.204525E-04
26477.60	9.600	75.000	-324.670	7.393676E+05		3.168690E-04
26482.10	14.100	71.218	-331.477	6.319937E+05	6.237292E-01	2.737923E-04
26487.10	19.100	67.017	-339.040	5.298433E+05	5.229147E-01	
26489.50	21.500	65.000	-342.670	4.864899E+85	4.801282E-01	
26492.10	3.100	62.942	-346.374	4.430145E+05		
26497.10	29.100	53.986	-353.496	3.681521E+05		1.717982E-04
26502.10	34.100	55.029	-360.618		2.997968E-01	
26503.40	35.400	54.000	-362.470	∠.886U31E+05	2.848291E-01	1.414/12E-04

TABLE 5-R356397

URANUS
NOMINAL URANUS ATMOSPHERE,
MEAN MOLECULAR MASS = 2.680 GRAMS/MOLE
INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 26468.00 KM RADIUS
PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 5.67444957E+06 KM3/SEC2
GREF = 8.09993416E-03 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSI	IBE	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
26507.10	39.100	54.296	-361.937		2.460835E-01	
26512.10	44.100	54.696	-361.217		2.021526E-01	
26517.10	49.100	55.096	-360.497	1.684457E+05	1.662430E-01	
26522.10	54.100	55.496	-359.777	1.386712E+05		
26527.10	59.100	55.896	-359.057	1.142800E+05	1.127856E-01	
26530.90	62.900	56.200	-358.510	9.872365E+04	9.743266E-02	5.468365E-05
26532.10	64.100	56.302	-358.327	9.427877E+04		4.705996E-05
26537.10	69.100	56.725	-357.565	7.788826E+84		4.485678E-05
26542.10	74.100	57.148	-356.804			3.677071E-05
26547.10	79.100	57.571	-356.042	6.444696E+04	-	3.019078E-05
26552.10	84.100			5.340659E+04		2.482759E-05
	89.100	57.994	+355.280 -354.548		4.374441E-02	
26557.10 26562.10		58.418	-354.518	3.684050E+04		1.686850E-05
	94.100	58.841	-353.757	3.066509E+04		1.393599E-05
26562.80	94.800	58.900	-353.650	2.989088E+04		1.356995E-05
26567.10	99.100	59.256	-353.009		2.522533E-02	
26572.10	104.100	59.670	-352.264	2.133003E+04	2.105110E-02	
26577.10	109.100	60.084	-351.519		1.758871E-02	
26582.10	114.100	60.498	-350.774	1.490817E+04	1.471322E-02	
26587.10	119.100	60.912	-350.029	1.248550E+04	1.232223E-02	5.498438E-06
26592.10	124.100	61.325	-349.284	1.046863E+04		4.581999E-06
26593.00	125.000	61.400	-349.150		1.001044E-02	
26597.10	129.100	61.732	-348.553	8.787887E+03		3.821124E-06
26602.10	134.100	62.136	-347.825	7.386038E+03		3.190313E-06
26607.10	139.100	62.540	-347.097		6.134062E-03	2.666987E-86
26612.10	144.100	62.945	-346.369	5.236454E+03	5.167978E-03	2.232268E-06
26617.10	149.100	63.349	-345.641		4.359189E-03	1.870695E-06
26622.10	154.100	63.754	-344.913	3.730038E+03		1.569581E-06
26627.10	159.100	64.158	-344-185	3.153577E+03	3.112338E-03	1.318506E-06
26632.10	164.100	64.562	-343.458	2.669234E+03		1.108896E-06
26637.10	169.100	64.967	-342.730	2.261812E+03		9.336931E-07
26642.10	174.100	65.371	-342.002	1.918599E+03	1.893608E-03	
26647.10	179.100	65.776	-341.274	1.629414E+03	1.608107E-03	6.642293E-07
26652.10	184.100	66.180	-340.546	1.385240E+03		5.611853E-07
26657.10	189.100	66.585	-339.818	1.178911E+03	1.163495E-03	4.746506E-07
26661.00	193.000	65.900	-339.250	1.040314E+03	1.026710E-03	4.168425E-07
26662.10	194.100	66.991	-339.087	1.004371E+03	9.912372E-04	4.018946E-07
26667.10	199.100	67.403	-338.345	8.565653E+02	8.453642E-04	
26672.10	204.100	67.815	-337.603		7.217026E-04	
26677.10	209.100	58.227	-336.861		6.167590E-04	
26682.10	214.100	68.639	-336.119	5.345972E+02	5.276064E-04	2.087668E-07
26687.10	219.100	69.051	-335.377		4.517901E-04	1.776978E-87
26692.10	224.100	69.464	-334.635	3.923801E+02		
26697.10	229.100	69.876	-333.894		3.322507E-04	
26702.10	234.100	70.288	-333-152		2.853372E-04	
26707.10	239.100	70.700	-332.410	2.485303E+02	2.452804E-04	9.421883E-08
26712.10	244.100	71.112	-331.668		2.110447E-04	

URANUS

NOMINAL URANUS ATMOSPHERE,

MEAN MOLECULAR MASS = 2.680 GRAMS/MOLE

INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 26468.00 KM RADIUS

PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 5.67444957E+06 KM3/SEC2

DATE 01/13/72.

GREF = 8.09993416E-03 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSU	105	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
26717.10	249.100	71.524	-330.926	· · · · · · · -	1.817559E-04	
26722.10	254.100	71.937	-330.184		1.566752E-04	5.914646E-08
26727.10	259.100	72.349	-329.442	1.369689E+02		5.073962E-08
26732.10	264.100	72.761	-328.700		1.167345E-04	4.356809E-08
26735.00	267.000	73.000	-328.270	1.086782E+02		3.989952E-08
26737.10	269.100	73.175	-327.954		1.008969E-04	3.744306E-08
26742.10	274.100	73.593	-327.202	8.844191E+01	- · · · · · · ·	3.220692E-08
26747.10	279.100	74.011	-326.450		7.557648E-05	2.772828E-08
26752.10	284.100	74.429	-325.699	6.636295E+01		2.389394E-08
26757.10	289.100	74.846	-324.947	5.756004E+01		2.060817E-08
26762.10	294.100	75.264	-324.195	4.996723E+01		1.778990E-08
26767.10	299.100	75.682	-323.443	4.341244E+01		1.537042E-08
26772.10	304.100	75.099	-322.691		3.725521E-05	1.329144E-08
26777.10	309.100	76.517	-321.939		3.242150E-05	1.150346E-08
26782.10	314.100	76.935	-321.187		2.323787E-05	9.964381E-09
26787.10	319.100	77.353	-320.435	2.493999E+01		8.638416E-09
26792.10	324.100	77.770	-319.683		2.147200E-05	7.495072E-09
26797.10	329.100	78.188	-318.931		1.874592E-05	6.508359E-09
26802.10	334.100	78.606	-318.180	1.659568E+01		5.656104E-09
26807.10	339.100	79.024	-317.428		1.432137E-05	4.919373E-09
26812.10	344.100	79.441	+316.676	1.269807E+01	1.253202E-05	4.281983E-09
26814.00	346.000	79.600	-316.390	1.207250E+01	1.191463E-05	4.062874E-09
26817.10	349.100	79.848	-315.944	1.111982E+01	1.097441E-05	3.730763E-09
26822.10	354.100	80.248	-315.224	9.744629E+00	9.617201E-06	3.253261E-09
26827.10	359.100	80.648	-314.504	8.545474E+00	8.433727E-06	2.838925E-09
26832.10	364.100	81.048	-313.784	7.499067E+00	7.401004E-06	2.479132E-09
26837.10	369.100	81.448	-313.064		6.499187E-06	2.166472E-09
26842.10	374.100	81.848	-312.344	5.786800E+00	5.711127E-06	1.894572E-09
26847.10	379.100	82.248	-311.624	5.088536E+00	5.021994E-06	1.657948E-09
26852.10	384.100	82.648	-310.904	4.477504E+00	4.418952E-06	1.451876E-09
26857.10	389.100	83.948	-310.184	3.942440E+00	3.890885E-06	1.272284E-09
26862.10	394.100	83.448	-309.464	3.473581E+00		1.115659E-09
26867.10	399.100	83.848	-308.744	3.062459E+00	3.022412E-06	9.789703E-10
26872.10	404.100	84.248	-308.024	2.701725E+00	2.666395E-06	8.595973E-10
26877.10	409.100	84.648	-307.304		2.353806E-06	7.552756E-10
26882.10	414.100	85.048	-306.584	2.106716E+00		6.640458E-10
26887.10	419.100	85.448	-305.864	1.862066E+00		5.842116E-10
26892.10	424.100	85.848	-305.144	1.646841E+00	1.625305E-06	5.143033E-10
26897.10	429.100	86.248	-304.424	1.457382E+00	1.438324E-06	4.530466E-10
26902.10	434.100	86.648	-303.704	1.290500E+00	1.273624E-06	3.993359E-10
26904.00	436.000	86.800	-303.430	1.232413E+00	1.216297E-06	3.807005E-10
26907.10	439.100	87.055	-302.971	1.143416E+00	1.128464E-06	3.521784E-10
26912.10	444.100	87.467	-302.230	1.013716E+00	1.000460E-06	3.107680E-10
26917.10	449.100	87.878	-301.490		8.875141E-07	
26922.10	454.100	88.289	-300.749		7.877927E-07	
26927.10	459.100	88.701	-300.008	/ • U0953/E=U1	6.996928E-07	Z+143313E=10

TABLE 5-R356397

URANUS
NOMINAL URANUS ATMOSPHERE,
MEAN MOLECULAR MASS = 2.680 GRAMS/MOLE
INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 26468.00 KM RADIUS
PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 5.67444957E+06 KM3/SEC2
GREF = 8.09993416E-03 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSI	JRE	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATHOSPHERES	GM/CM3
26932.10	464.100	89.112	-299.268	6.300511E-01	6.218121E-07	1.895992E-10
26937.10	459.100	89.524	-298.527	5.602495E-01	5.529233E-07	1.678226E-10
26942.10	474.100	89.935	-297.786	4.984697E-01	4.919514E-07	1.486364E-10
26947.10	479.100	90.347	-297.046	4.437573E-01	4.379544E-07	1.317220E-10
26952.10	484.100	90.758	-296.305	3.952749E-01	3.901060E-07	1.168013E-10
26957.10	489.100	91.170	-295.565	3.522880E-01	3.476812E-07	1.036311E-10
26962.10	494.100	91.581	-294.824	3.141514E-01	3.100433E-07	9.199929E-11
26967.10	499.100	91.993	-294.083	2.802984E-01	2.766330E-07	8.171990E-11
26972.10	504.100	92.404	-293.343	2.502307E-01	2.469585E-07	7.263034E-11
26977.10	509.100	92.816	-292.602	2.235099E-01	2.205871E-07	6.458818E-11
26982.10	514.100	93.227	-291.861	1.997501E-01	1.971380E-07	5.746859E-11
26987.10	519.100	93.638	-291.121	1.786115E-01	1.762758E-07	5.116212E-11
26992.10	524.100	94.050	-290.380	1.597944E-01	1.577048E-07	4.557270E-11
26997.10	529.100	94.461	-289.640	1.430348E-01	1.411644E-07	4.061601E-11
27000.00	532.000	94.700	-289.210	1.341640E-01	1.324096E-07	3.800146E-11

TABLE 5-R356397

URANUS DATE 01/13/72.

NOMINAL URANUS ATMOSPHERE,

MEAN MOLECULAR MASS = 2.680 GRAMS/MOLE

INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 26468.00 KM RADIUS

PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 5.67444957E+06 KM3/SEC2

GREF = 8.09993416E-03 KM/SEC2

	JRE PROFILE					
BASE KM	ALTITUDE I KFT	KINETIC TE KELVIN	MPERATURE RANKINE	MOLEC S KELVIN	CALE TEMP RANKINE	MOLEC WT G/GMOLE
-355.900	*167.651	382.300	688.140	382.446	688.402	2.679
-295.500	-969.488	306.600	551.880	306.353	551.435	2.682
-245.200	-804.462	295.000	531.000	294.845	530.721	2.681
-214.500	-703.740	270.000	486.000	270.354	486.537	2.676
-207.300	-680.118	264.100	475.380	264.103	475.385	2.680
-113.600	-372.703	185.300	333.540	185.572	334.030	2.676
-86.900	-285.105	162.200	291.960	163.060	293.509	2.665
-78.600	-257.874	155.000	279.000	155.338	279.608	2.674
-67.300	-220.801	145.000	261.000	145.159	261.286	2.677
-43.200	-141.732	123.500	222.300	123.559	222.406	2.679
0.	0.	84.000	151.200	83.961	151.130	2.681
2.300	7.546	81.900	147.420	81.872	147.370	2.681
9.600	31.495	75.000	135.000	75.212	135.382	2.672
21.500	70.538	65.000	117.000	73.077	131.538	2.384
35.400	116.142	54.000	97.200	65.757	118.363	2.201
62.900	206.365	56.200	101.160	67.621	121.717	2.227
94.800	311.024	58.900	106.020	71.002	127.803	2.223
125.000	410.105	61.400	110.520	73.726	132.707	2.232
193.000	533.202	65.900	120.420	80.445	144.802	2.229
267.000	875.984	73.000	131.400	87.798	158.036	2.228
346.000	1135.171	73.600	143.280	95.780	172.403	2.227
436.000	1430.446	85.800	156.240	104.348	187.826	2.229
532.000	1745.407	94.700	170.460	113.801	204.941	2.230

Section F

TABLE 6-R356397

NEPTUN
NOMINAL NEPTUNE ATMOSPHERE,
MEAN MOLECULAR MASS = 2.680 GRAMS/MOLE
INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 24857.00 KM RADIUS
PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 6.79657494E+06 KM3/SEC2
GREF = 1.10000000E+02 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSU	JRE	DENSITY
ΚM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
24675.00	-182.000	270.000	26.330	9.584474E+07	9.459140E+01	
24680.00	-177.000	264.315	16.097		8.841100E+01	
24685.00	-172.000	258.630	5.864		8.251641E+01	
24690.00	-167.000	252.945	-4.369		7.690000E+01	
24695.00	-162.000	247.260	-14.602		7.155421E+01	
24700.00	-157.000	241.575	-24.834	6.735227E+07		9.011023E-03
24705.00	-152.000	235.890	-35.067	6.246126E+07	6.164447E+01	
24710.00	-147.000	230.205	-45.300		5.706567E+01	
24715.00	-142.000	224.521	-55.533	5.342642E+07	5.272777E+01	7.685596E-03
24720.00	-137.000	218.836	-65.766		4.862350E+01	
24725.00	-132.000	213.151	-75.999	4.533850E+07	4.474562E+01	6.866475E-03
24730.00	-127.000	207.466	-86.232	4.163136E+07	4.108696E+01	6.475994E-03
24735.00	-122.000	201.781	-96.465		3.764042E+01	
24740.00	-117.000	196.096	-106.697	3.485473E+07		5.732737E-03
24745.00	-112.000	190.411	-116.930	3.177101E+07	3.135555E+01	5.379778E-03
24748.00	-109.000	187.000	-123.079	3.001418E+07		5.173923E-03
24750.00	-107.000	184.597	-127.395	2.888045E+07	2.850279E+01	5.043681E-03
24755.00	-102.000	178.590	-138.209	2.617171E+07	2.582947E+01	4.725326E-03
24760.00	-97.000	172.582	-149.022	2.363771E+07	2.332860E+01	4.417318E-03
24761.40	-95.600	170.900	-152.050	2.295870E+07	2.265847E+01	4.332929E-03
24765.00	-92.000	166.652	-159.696	2.127170E+07	2.099354E+01	4.123846E-03
24766.40	-90.600	165.000	-162.670	2.063816E+07	2.036828E+01	4.043838E-03
24770.00	-87.000	160.714	-170.384	1.906908E+07	1.881971E+01	3.825459E-03
24774.80	-82.200	155.000	-180.670	1.711045E+07	1.688670E+01	3.545217E-03
24775.00	-82.000	154.760	-181.102	1.703205E+07	1.580933E+01	3.534596E-03
24780.00	-77.000	148.755	-191.911	1.514809E+07	1.495000E+01	3.274020E-03
24785.00	-72.000	142.750	-202.719	1.340642E+07		3.022979E-03
24790.00	-67.000	136.746	-213.528	1.180166E+07		2.781495E-03
24795.00	-62.000	130.741	-224.336	1.032841E+07		2.549594E-03
24796.20	-60.800	129.300	-226.930	9.993800E+06	9.363114E+00	2.495366E-03
24800.00	-57.000	124.606	-235.379	8.981310E+06	8.863864E+00	2.327079E-03
24805.00	-52.000	118.429	-246.497	7.755030E+06	7.653620E+00	2.114195E-03
24810.00	-47.000	112.253	-257.615	6.644110E+06		1.911052E-03
24815.00	-42.000	106.076	-268.732	5.643072E+06	5.369279E+00	1.717686E-03
24820.00	-37.000	99.900	-279.850	4.746421E+06	4.684353E+00	1.534135E-03
24825.00	-32.000	93.724	-290.968	3.948648E+06	3.897013E+00	1.360443E-03
24828.50	-28.500	89.400	-298.750	3.446081E+06	3.401018E+00	1.244751E-03
24830.00	-27.000	87.483	-302.200	3.247699E+06	3.205229E+00	1.155835E+03
24832.10 24835.00	-24.900	84.800	-307.030	2.993371E+06	2.954228E+00	1.043823E-03
	-22.000	81.417	-313.120	2.675280E+06	2.640296E+00	9.480002E-04
24840.00 24840.50	-17.000 -16.500	75.583 75.000	-323.620 -324.670	2.194770E+06 2.151085E+06	2.166069E+00	8.000548E-04
24845.00	-12.000	70.055	-333.571	1.784360E+06	2.122955E+00 1.761026E+00	7.863879E-04
24849.60	-7.400	65.000	-342.670	1.455159E+06	1.436130E+00	6.945711E-04 6.065882E-04
24850.00	-7.000	64.568	-343.448	1.428610E+06		5.994706E-04
24855.00	-2.000	59.162	-353.178	1.122655E+06	1.107974E+00	5.136666E-04
24857.00	0.	57.000	-357.070		1.000000E+00	
	•	21 0 0 0 0	3211013	740705705400	7100000C+00	7.0099946704

NEPTUN

DATE 01/13/72.

NOMINAL NEPTUNE ATMOSPHERE,

MEAN MOLECULAR MASS = 2.680 GRAMS/MOLE INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 24857.00 KM RADIUS

PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 6.79657494E+06 KM3/SEC2

GREF = 1.10000000E-02 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSU	IRF	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
24860.00	3.000	53.691	-363.026		8.510314E-01	
24865.00	8.000	48.176	-372.952		6.355765E-01	•
24870.00	13.000	42.662	-382.879		4.584056E-01	
24870.60	13.600	42.000	-384.070		4.395658E-01	
24875.00	18.000	42.652	-382.897		3.229564E-01	
24876.00	19.000	42.800	-382.630		3.012602E-01	
24880.00	23.000	43.438	-381.482		2.286693E-01	-
24885.00	28.000	44.236	-380.046		1.529458E-01	
24890.00	33.000	45.033	-378.510		1.168332E-01	
24892.30	35.300	45.400	-377.950		1.004577E-01	
24895.00	38.000	45.814	-377.204		8.427132E-02	
24900.00	43.000	46.581	-375.823			3.595941E-05
24905.00	48.000	47.349	-374.442		4.459451E-02	
24910.00	53.000	48.116	-373.061		3.270439E-02	
24911.20	54.200	48.300	-372.730		3.038231E-02	
24915.00	58.000	43.878	-371.689		2.410713E-02	
24920.00	63.000	49.639	-370.320		1.785501E-02	
24925.00	58.000	50.400	-368.950		1.328571E-02	
24929.60	72.600	51.100	-367.690		1.016256E-02	
24930.00	73.000	51.151	-367.580		9.930240E-03	
24935.00	78.000	51.928	-366.200		7.454860E=03	
24940.00	83.000	52.694	-364.820		5.520525E-03	
24945.00	88.000	53.461	-363.440			-
24950.00	93.000	54.227	-362.061		4.255189E-03	
24955.00	98.000	54.994	-360.681		3.234553E-03 2.468393E-03	
24960.00	103.000	55.750	-359.301	_	_	9.295236E-07
24965.00	108.000	56 . 527	-357.922		1.453929E-03	
24970.00		57.293	-356.542		1.121977E-03	5.368955E-07
24972.00	113.000 115.000	57.600	-355.990		1.012489E÷03	
24975.00		53.072	-355.140			4.819445E-07 4.102370E-07
	118.000				8.588828E-04	
24980.00 24985.00	123.000	58.860	-353.723		6.752550E-04	3.145693E-07
	128.000	59.647	-352.306		5.265830E-04	2.420848E-07
24999.00	133.000	60.434	-350.889	_	4.120210E-04	1.869593E-07
24995.00	138.000	61.221	-349.472		3.234355E-04	1.448324E-07
25000.00	143.000	62.009	-348.055		2.547041E-04	1.126511E-07
25005.00	148.000	62.796	-346.638		2.012006E-04	8.787588E-08
25010.00	153.000	63.583	-345.221		1.594159E-04	5.876755E-08
25015.00	158.000	64.370	-343.804		1.266831E-04	5.398125E-08
25019.00	152.000	65.000	-342.670		1.056250E-04	4.457357E-08
25020.00	153.000	65.155	~342.392		1.009606E+04	
25025.00	158.000	65.928	-340.999 -770.507		8.068747E=05	3.356234E-08
25030.00	173.000	55.702	-339.507		6.466267E-05	
25035.00	178.000	67.475	-338.214		5.195958E-05	
25040.00	183.000	68.249	-336.822		4.186176E-05	
25045.00	188.000	69.023	-335.429		3.381277E-05	
25050.00	193.000	69.796	-334.037	2.1142b3t+01	2.737984E-05	T+0141415-00

TABLE 5-R356397

DATE 01/13/72.

NEPTUN NOMINAL NEPTUNE ATMOSPHERE, MEAN MOLECULAR MASS = 2.680 GRAMS/MOLE INITIAL PRESSURE =1.013250E+06 DYNES/SQCM AT 24857.00 KM RADIUS PRINT INTERVAL = 5 KM, GAS CONSTANT = 8.31430000E+07 JOULES/(MOLE.DEG KELVIN)
ONE ATMOSPHERE = 1.01325000E+06 DYNES/CM2, MU= 6.79657494E+06 KM3/SEC2 GREF = 1.10000000E-02 KM/SEC2

RADIUS	ALTITUDE	TEMPE	RATURE	PRESSU	JRE .	DENSITY
KM	KM	KELVIN	FAHREN	DYNE/CM2	ATMOSPHERES	GM/CM3
25055.00	198.000	70.570	-332.644	2.251958E+01	2.222510E-05	8.626910E-09
25060.00	203.000	71.343	-331.252	1.832366E+01	1.808404E-05	6.942201E-09
25065.00	208.000	72.117	-329.859	1.494446E+01	1.474903E-05	5.600258E-09
25070.00	213.000	72.891	-328.467	1.221638E+01	1.205653E-05	4.528607E-09
25072.00	215.000	73.200	-327.910	1.127719E+01	1.112972E-05	4.162508E-09
25075.00	218.000	73.657	-327.087	1.000857E+01	9.877687E-06	3.671407E-09
25080.00	223.000	74.420	-325.715	8.217233E+00	8.109778E-06	2.983553E-09
25085.00	228.000	75.182	-324.342	6.760554E+00	6.572148E-06	2.429870E-09
25090.00	233.000	75.944	-322.970	5.573445E+00	5.500562E-06	1.983177E-09
25095.00	238.000	76.707	-321.598	4.603969E+00	4.543764E-06	1.521399E-09
25100.00	243.000	77.469	-320.226	3.810580E+00	3.760750E-06	1.329328E-09
25105.00	248.000	73.231	-318.854	3.159972E+00	3.118650E-06	1.091664E-09
25110.00	253.000	78.993	-317.482	2.625384E+00	2.591052E-06	8.982541E-10
25115.00	258.000	79.756	-316.110	2.185264E+00	2.156688E-06	7.405612E-10
25120.00	263.000	80.518	-314.738	1.822224E+00	1.798395E-06	6.117073E-10
25125.00	268.000	81.280	-313.365	1.522198E+00	1.502293E-06	5.062170E-10
25130.00	273.000	82.043	-311.993	1.273790E+00	1.257133E-06	4.196865E-10
25133.00	276.000	82.500	-311.170	1.145596E+00	1.139616E-96	3.753649E-10
25135.00	278.000	82.813	-310.606	1.057748E+00	1.053786E-06	3.485523E-10
25140.00	283.000	83.597	-309.195		8.348359E-07	2.899561E-10
25145.00	288.000	84.381	-307.785	7.540803E-01	7.442194E-07	2.416526E-10
25150.00	293.000	85.164	-306.374		6.269801E-07	2.017375E-10
25155.00	298.000	85.948	-304.964		5.290640E-07	1.687015E-10
25160.00	303.000	86.731	-303.554		4.471434E-07	1.413109E-10
25165.00	308.000	87.515	-302.143	3.835205E-01		1.185615E-10
25170.00	313.000	88.299	-300.733	3.251425E-01		9.963464E-11
25175.00	318.000	89.082	-299.322	2.760656E-01	2.724555E-07	8.386170E-11
25180.00	323.000	89.866	-297.912		2.316734E-07	
25185.00	328.000	90.649	-296.501		1.972820E-07	
25190.00	333.000	91.433	-295.091		1.582361E-07	
25195.00	338.000	92.216	-293.680		1.436682E-07	
25200.00	343.000	93.000	-292.270	1.244553E-01	1.228575E-07	3.624293E-11

NEPTUN NOMINAL NEPTUNE ATMOSPHERE, DATE 01/13/72.

TEMPERATU	JRE PROFILE	INPUTS				
BASE KM	ALTITUDE KFT	KINETIC TEN			CALE TEMP	MOLEC WT
דות	KFI	KELVIN	RANKINE	KELVIN	RANKINE	G/GMOLE
-182.000	-597.113	270.000	486.000	269.021	484.238	2.690
-109.000	-357.612	187.000	336.600	186.989	336.580	2.680
-95.600	-313.648	170.900	307.620	170.795	307.431	2.682
-90.600	-297.244	165.000	297.000	164.508	296.114	2.688
-82.200	-269.685	155.000	279.000	155.571	280.02 7	2.670
-60.800	-199.475	129.300	232.740	129.094	232.369	2.684
-28.500	-93.504	89.400	160.920	89.239	160.629	2.685
-24.900	-81.693	84.800	152.640	92.436	166.385	2.459
-16.500	-54.134	75.000	135.000	88.172	158.709	2.280
-7.400	-24.278	65.000	117.000	77.326	139.187	2.253
0.	0.	57.000	102.600	67.902	122.223	2.250
13.600	44.519	42.000	75.600	50.247	90.445	2.240
19.000	62.335	42.800	77.040	50.978	91.760	2.250
35.300	115.814	45.400	81.720	54.074	97.334	2.250
54.200	177.822	48.300	86.940	57.637	103.746	2.246
72.600	238.189	51.100	91.980	60.934	109.582	2.247
115.000	377.297	57.600	103.680	68.615	123.507	2.250
162.000	531.495	65.000	117.000	77.395	139.312	2.251
215.000	705.381	73.200	131.760	87.328	157.191	2.246
276.000	905.512	82.500	148.500	98.376	177.076	2.248
343.000	1125.328	93.000	167.400	110.714	199.286	2.251

H. REFERENCES

- 1. NASA Space Vehicle design criteria document for the planet Jupiter (1970), NASA SP-8069, dated August 1971 (See SOW (b(6) (B))
- 2. NASA Space Vehicle design criteria document for the planet Saturn (1970) (See SOW (C(4) (B))
- 3. JPL Section Document 131-17 Preliminary Model Atmospheres for the Planets Uranus and Neptune, dated 4 November 1971
- 4. Constants and Related Information for Astrodynamic Calculations, 1968, by Melbourne, Mulholland, Sjogren, and Sturms, (JPL) NASA technical report 32-1306, dated July 15, 1968
- 5. Memo from Ken Ledbetter, describing telecon with D. Wiksten and F. Palluconi of JPL, dated 14 January 1972

APPENDIX F

ATTITUDE CONTROL SUBSYSTEM ANALYSIS

E. A. Berkery

June 9, 1972

ATTITUDE CONTROL SUBSYSTEM ANALYSIS

1. Separation

Separation with Initial Spin - The location of the significant vectors is determined by assuming the probe's initial position is correct and the momentum vector is composed of the nominal spin rate along the k (spin) axis and a transverse rate equal to the tipoff rate.

$$\overline{P} = I_s \overline{W}_s + I_t \overline{W}_T$$

$$\tan^{-1} \theta_1 \approx \theta_1 = \frac{W_T^I_t}{W_s^I_s} = \frac{W_t}{W_s(1+\lambda)}$$

W_g = spin rate

P = momentum vector

P = spin momentum

 $I_s = spin moment of inertia$

 T_{+} = transverse moment of inertia

$$\lambda = I_{s}/I_{t} - 1$$

 $W_{t} = tip off rate$

The motion then consists of nutation around the momentum vector with half cone angle $\boldsymbol{\theta}_1$.

Separation without Spin - There are two types of errors associated with this mode of operation: the initial drift error and the error developed during spinup caused by the combined tipoff and spinup rates.

The drift error is

$$\theta_2 = W_T t_D$$

The error developed during spinup may be analyzed as follows:

$$\frac{\cdot}{P} = m \hat{k}$$

m = torque

$$\hat{k} = \frac{\overline{P}}{I_t} \times \hat{k}$$

$$\frac{\ddot{P}}{P} = \frac{\overline{P} \times \overline{P}}{I_{t}}$$

$$\overline{P} = \hat{x}p_x + \hat{y}p_y + \hat{z}p_z$$

Assume

$$\dot{p}_z = m$$
 $p_z = mt$

Then

$$\ddot{p}_{x} = \frac{m}{I_{t}} \left(p_{y} - t\dot{p}_{y} \right)$$

$$\ddot{p}_{y} = \frac{m}{I_{t}} \quad (t\dot{p}_{x} - p_{x})$$

$$\ddot{\mathbf{p}}_{\mathbf{x}} = \left(\frac{\mathbf{m}}{\mathbf{I}_{\mathbf{t}}}\right)^{2} \left(\mathbf{t}\mathbf{p}_{\mathbf{x}} - \mathbf{t}^{2}\dot{\mathbf{p}}_{\mathbf{x}}\right)$$

$$\ddot{p}_{y} = \left(\frac{m}{I_{t}}\right)^{2} \left(tp_{y} - t^{2}\dot{p}_{y}\right)$$

Assuming

$$p_x = \sum_{n=0}^{\infty} a_n t^n$$
 $p_y = \sum_{n=0}^{\infty} b_n t^h$

and

$$p_{x}(0) = W_{T}I_{T}, \dot{p}_{x}(0) = 0, \ddot{p}_{x}(0) = 0, \ddot{p}_{x}(0) = 0$$

$$p_y(0) = 0$$
, $\dot{p}_y(0) = 0$, $\ddot{p}_y(0) = -\frac{m}{I_t} p_x(0)$, $\ddot{p}_y(0) = 0$

The solutions

$$p_{x} = p_{x}(0) \left[1 + \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{P_{s}^{2}}{mI_{t}} \right)^{2N} \frac{(4N-2)!}{(4N)! (2N-1)! 2^{2N-1}} \right]$$

$$p_y = p_x(0) \sum_{0}^{\infty} \frac{(-1)^{n+1} 4N!}{(4N+2)! (2N)! 2^{2N}} \left(\frac{P_s^2}{mI_t}\right)^{2N+1}$$

This solution is valid for small displacements of the momentum vector (i.e., $\mathbf{p_x}$, $\mathbf{p_y}$ << $\mathbf{p_s}$). Although it is absolutely convergent, if the value of $\mathbf{P_s}^2/\mathbf{m}\mathbf{I_t}$ is much greater than unity, many terms must be evaluated. For the purpose of simplification, it is sufficient to evaluate the series for a point in time at which the spin momentum becomes considerably greater than the tipoff momentum.

$$m = 3 \text{ ft-lb}$$
 $t = 2 \text{ seconds}$ $I_s = 9 \text{ slug-ft}^2 W_t = \frac{1}{2} \text{ deg/sec}$
 $\dot{W}_s = 1/3 \text{ rad/sec}^2$ $W_s = 2/3 \text{ rad/sec}$ $P_s^2/mI_t = 1.6$ $1 + \lambda = 1.2$

$$\theta_{x}(p) = \frac{P_{x}}{P} = 0.625 \left[1 + \frac{2.56}{24} - \frac{6.55}{2688} + \frac{16.78}{506880} \dots \right] = 0.693^{\circ}$$

$$\theta_{y}(p) = \frac{P_{y}}{P_{s}} = 0.625 \left[-\frac{1.6}{2} + \frac{4.1}{240} - \frac{10.49}{54560} \dots \right] = -0.489^{\circ}$$

Total momentum displacement

$$\theta(p) = \sqrt{\frac{\theta_x^2 + \theta_y^2}{y}} = 0.85^\circ$$

The location of the \hat{k} spin axis may be determined by $\hat{k} = \frac{\dot{\bar{p}}}{m}$

$$\theta_{\mathbf{x}}(\hat{\mathbf{k}}) = 1.25 \left[\frac{5.12}{24} - \frac{26.2}{2688} + \frac{100.68}{506880} \dots \right] = 0.255^{\circ}$$

$$\theta_{\mathbf{y}}(\hat{\mathbf{k}}) = 1.25 \left[-\frac{1.6}{2} + \frac{12.3}{240} - \frac{52.45}{54560} \dots \right] = -0.938^{\circ}$$

For small angles, the nutation half angle may be determined by taking the difference of the component angles

$$|\theta_{x}(N)| = 0.438^{\circ}$$
 $|\theta_{y}(N)| = 0.449^{\circ}$

Nutation half cone angle $\theta(N) = 0.628^{\circ}$

Since torquing will continue for another 28 seconds to reach a final spin rate of 10 rad/sec, there may be some additional movement of the momentum vector; however, it should be an order of magnitude less than the initial error of the first few seconds. Taking into account the drift error accumulation from separation to spinup (0.25°), the total pointing error becomes

$$\theta(p) = 1.06^{\circ}$$

$$\theta(N) = 0.63^{\circ}$$

Error Caused by Spin Jet Misalignment - This error and the remaining errors to be discussed are derived from Reference JPL TR-32-644. The displacement of the angular momentum vector is

$$\theta(\mathbf{p}) = K_3 \mathbf{y} + K_4 W_s$$

 γ = m $_{\mbox{t}}/m_{\mbox{s}}$ ratio of transverse torque to axial torque caused by jet misalignment

 K_3 = coefficient from reference (see discussion below)

K₄ = coefficient from reference (see discussion below)

The coefficient K_4 is a Fresnal integral which is plotted in the reference. Although the computer plot in the reference is with respect to some specific vehicle parameters, they are combined in a manner such that the curves may be normalized and applied to all vehicles. The coefficient K_3 is a double Fresnal integral which does not yield to attempts to normalize; however, the value of K_3 is bounded and approximate solutions may be obtained.

Subsequent to the delta velocity impulse event, the attitude control subsystem maneuvers to the final orientation. The accuracy of the final maneuver is a function of the sensor reference and is required to be two or three degrees depending on the specific mission.

Velocity Dispersion - The velocity dispersion caused by coning occurs because of two sources: initial nutation and misalignment of the delta velocity thrust vector. The error due to nutation is

$$\theta(V,N) \approx \frac{\theta_{o}(N)^{\pi}}{W_{s}t_{F}} W_{s}t_{F} > 4\pi$$

 $\theta(N)$ = initial nutation

W = spin velocity

 t_{r} = period of thrusting

The thrust misalignment error is developed in the reference Eq [67] and is based on the usual Euler angle approximations. This equation is subject to interpretation and does not agree with results of computer simulation and other approximations. An estimate of this error based on several approximate methods is

$$\theta(V,F) = \frac{Fr}{2\lambda I_s W_s^2}$$

r = moment arm (offset) of thrust

Attitude Maneuver - Probe studies at Martin Marietta have considered a number of attitude control systems appropriate to probe missions. The fundamental ACS problem here is to enable a probe to fire a delta velocity impulse and then orient the spin axis to the entry attitude without contact or supervision from the spacecraft or ground station. The economy of the design is a strong influencing factor for system selection. Methods considered consisted of stored momentum systems, offset thruster or radial thrusters to enable separation in the entry attitude, and open loop systems. None of these were feasible or sufficiently accurate and reliable for this application. Two approaches received more serious consideration.

ACS Design - Simple Closed Loop - Single-Axis Maneuver - This approach uses a sun sensor that provides a measurement of solar aspect as well as Sun crossing time. The maneuver sequence would consist of firing a preprogrammed set of precession impulses immediately following the delta velocity impulse maneuver. These

pulses could be offset in phase so that essentially a two-axis maneuver could be achieved, although only the maneuver angle with respect to the Sun line (i.e., solar aspect angle) could be measured. Subsequent to the initial maneuver, some time (order of several hours) would elapse while the damper removed residual nutation. A measurement of solar aspect angle would then provide information for further maneuvers.

ACS Design - Closed Loop - Two-Axis Maneuver - This design approach makes use of a Sun sensor to measure solar aspect angle and Sun crossing time, and a Jupiter sensor to measure Jupiter crossing time. The sequence of the maneuver would be similar to the single-axis system described above. Immediately following the delta velocity impulse maneuver, a preprogrammed series of pulses would orient the probe near its final position. Then, after a waiting period of several damper time constants, measurements are made of solar aspect angle (clock angle) and the angle between the Sun and Jupiter measured about the spin axis of the probe (cone angle). These measurements are then used to develop subsequent precession programs to finalize the probes position. Because of residual nutation, it is not considered desirable to continuously drive the probe to minimize the final error. For this reason the maneuver will take place in a series of steps as described above. With this approach there are certain constraints on the relative position of the Sun and Jupiter as discussed be-This system, using attitude sensors may also be used to trim probe attitude before the delta velocity impulse. represents a minor increment in complexity over a single-axis system and has inherent greater flexibility and capability, it has been the system that has received the major consideration. For missions in which the single axis system may be considered a preferred choice, it would be a minor consideration to reduce the two-axis maneuver system to a single-axis maneuver system.

Application of this approach to the Saturn mission does not require modification of the system although the stored maneuver angles would be changed. The Uranus mission would require some change in functional procedure since the Sun is only 4° away from the spin axis when the probe is in the entry attitude. The system for the Uranus mission will be programmed to point the spin axis directly at the sun initially. The 4-deg maneuver to the final position will then be implemented by sector logic control based on a Uranus sensor pulse. Control of the magnitude of the maneuver will be open loop, i.e., the number and duration of the attitude impulses will be preprogrammed. Because of the small angle of the maneuver, little error may be expected.

Reference System Geometry - The reference system for the probe attitude control consists of the spin axis, the Sun, and a planet. The geometry is illustrated in Figure F-1. The solar aspect sensor measures the angle (α) between the spin axis and the Sun-probe line. The location of the spin axis on this surface is then determined by measuring the angle (β) between the spin axis/Sun plane and the spin axis/planet plane. This measurement is influenced by the planet/probe/Sun angle (ϕ) for which a priori knowledge is programmed into the probe. The angle θ locates the probe on the conical surface and may be determined by the following relationship.

Figure F-1 Reference System Geometry

The angle θ would not be evaluated in the probe because with knowledge of φ and α , the measurement of β would be compared directly to a predetermined stored value. When the probe-planet vector lies within the conical surface, θ is a double valued function (i.e., there are two positions on the cone which will result in equal values for β). This could occur during trim maneuvers prior to velocity impulse thrusting. However, the two values of θ are sufficiently far apart not to constitute a problem. For the entry attitude, this condition does not occur. Another undesirable condition occurs when the Sun/probe vector approaches the spin vector as it does in the Uranus mission profile. This represents a singularity in the control processing and creates a sensing problem caused by the finite width of the sensitive angle of the sensor. A slightly different approach must be used on the Uranus mission, as discussed.

2. ACS - Design - Sensors

The problem is the three-axis attitude determination for a spin-stabilized spacecraft at approximately $10^7~\rm km$ from Jupiter. In the missions discussed, the probe is relatively near the line between Jupiter and the Sun. Jupiter will be nearly full-phase with approximately 0.4 degrees apparent diameter, as seen from the probe. Accuracy of angular measurements within 0.5 degrees is considered adequate.

The design approach uses two sensors: one to obtain two-axis information from the Sun, and the other to furnish third-axis information by sensing Jupiter.

The Sun sensor will measure the angle between the spacecraft spin axis and the Sun. This can be a 9-bit digital output (with the Adcole Corporation instrument), or linear analog output (with the Honeywell Radiation Center instrument). The second axis is determined by the direction of the Sun when the plane containing the instrument's optical axis and the spacecraft spin axis crosses the Sun. This is indicated by a pulse output from the Sun sensor. This sun sensor and its electronics will weigh a maximum of 3.5 lb with a maximum power requirement of 2 watts, if the instrument is to cover the whole celestial sphere on each revolution about the spacecraft spin axis. These numbers can be lowered, if miniaturized integrated circuitry is used, and if the spin-axisto-Sun angle is constrained within certain limits.

3. ACS Design Jupiter Sensor

The electromagnetic radiation emanating from the planet Jupiter, consists mainly of the following three classifications:

- 1) Reflected light from the Sun, essentially in the wavelength and from 0.3 to 1.5 microns, with peak at approximately 0.5 micron. This is in the visual and near-infrared region. The apparent shape of Jupiter in this radiation will vary from thin-crescent to fully illuminated disc, as a function of the phase angle between the line of sight from the instrument to Jupiter and the line from Jupiter to the Sun.
- 2) Energy radiated by the planet, as a "black body," resulting from its own temperature. Since Jupiter has a significant atmosphere and a high rotational speed (approximately 10 hours per revolution), the temperature over the entire apparent surface of Jupiter is relatively constant at approximately 130 °K. Its black-body radiation is essentially in the wavelength band from 5 to 30 microns, peaking at about 11 microns; it is relatively constant from about 8 to 14 microns. Jupiter's apparent shape in this radiation will be the nearly circular shape of an oblate spheroid.
- 3) Radio-frequency radiations in the wavelength band longer than 3 centimeters. This radiation seems to be associated with varying but discrete sources on the planet, and is therefore not suitable for sensing the planet for determination of its center.

Sensors that can detect the reflected solar radiation are many, and their relative usefulness depends upon the specific purpose of the instrumentation as well as their own intrinsic properties. Some of the more frequently used materials are tabulated.

At least three materials are sensitive in the range of Jupiter's black-body radiation: mercury-doped germanium, operating at 28 °K; gold-doped germanium, at 60°K; copper-doped germanium, at 4.2°K. Zinc-doped germanium at 4.2°K covers the desired range at lower sensitivity; it is more useful at somewhat longer wavelengths. The disadvantage common to these materials is that they must be operated at very low temperatures. This often adds prohibitive amounts of weight for spacecraft applications, but the lower temperatures available in space can conceivably be used to advantage for these detectors.

	Wavelength at Peak	
<u>Material</u>	Response (µ)	Remarks
S-1	1	
S-11	0.3	
S-20	0.42	Highest response
Others		
Silicon	1	Photo conductive and photovoltaic
Selenium	0.8	
Gallium arsonide	0.8	
Copper-	٥ =	
oxide	0.5	
Cadmium sulphide	(visual)	

Based on the above, the device selected for a Jupiter sensor will consist of a silicon sensitive element and possibly a lens system.

The Sun sensor requirements for the Saturn mission appear to be within the requirements of available sensors. At Uranus distance from the Sun, an additional lens system may be necessary. Planet sensors for Saturn and Uranus will require additional lenses as compared to the Jupiter sensor; however, these sensors have a very simple function and the modification would be minor.

4. ACS Design - Electronics

The functional block diagram illustrated in Figure F-2 is representative of the electronics for all missions requiring an attitude control system. The functions required of the ACS electronics follow.

1) Process the solar aspect angle information. The data output of the solar aspect sensor is generally analog or digital gray code. In either case, this output should be converted to binary digital for processing in the logic. The solar aspect output may be used as a measure of nutation as described in the paragraph on logic.

F-11

- 2) The pulse output from the Sun sensor is generated when the Sun crosses the sensor's optical axis. Processing of this pulse will consist of establishing the center of the pulse by selecting the point at which the derivative (slope) is equal to zero (maximum amplitude) or averaging the time between preselected amplitudes. Some study must be made of the effect of the greatly increased solar range on this pulse. It is distinctly possible that the solar intensity near Jupiter may be decreased by factors other than range as recent data from the Mariner flights indicate a discrepancy between measured and expected illumination. The Sun pulse is used to control the sector logic (discussed below) as well as provide attitude information in combination with a similar Jupiter pulse.
- 3) The pulse derived from the Jupiter sensor when the planet crosses the optical axis of the sensor is essentially similar to the Sun pulse described above and processing will be the same.
- 4) Sector logic will be used to establish correct precession jet firing intervals. There are two obvious approaches to this logic. A counter may be used to measure the period of revolution. Simple binary division and addition processing may then be used to establish the angular position of the probe at any time during the next revolution on the basis of the content of the register. Since the measured period of rotation will be updated every revolution, the basic timing oscillator would have no critical nominal frequency requirements and reasonable drift requirements resulting in a simple economical design for this element. However, the digital processing would be increased over the voltage controlled oscillator approach. The use of a VCO would enable the sector logic to be hard wired. This system generates the proper sector logic by driving the oscillator so that the count register approaches a fixed value for every revolution. The angular position of the probe is determined when this counter reaches a preset value. This is the preferred approach for this function since the required development is decreased.
- 5) A nominal functional block diagram of the solar aspect precessing is shown in Figure F-3. At predetermined intervals, a series of solar aspect angles will be measured and the maximum and minimum selected. This is necessary since nutation will be present if the difference between these angles is too great, indicating excessive nutation an another mating interval will be initiated. If the difference between the maximum

Figure F-3 Precession Logic

and minimum angle is sufficiently small, the attitude evaluation will be performed. The evaluation will consist of summing the maximum and minimum measurements to obtain a measurement related to the mean value which is representative of the position of the angular momentum vector. This value is then compared to a preset attitude command and the sign and magnitude of the error is established. A similar function provides an evaluation of the spin axis cone angle. The difference in the content of the revolution period count register between the Sun and Jupiter pulse is compared with the total revolution period. This provides a measurement of the angle (β) through which the probe rotates between pulses, and establishes the position of the probe on the space cone defined by the solar aspect angle. An averaging similar to that provided by the solar aspect logic is performed and the results compared with a present command. The resultant angular errors are then used to program the timing of the precession events and pulse width. When the indicated error decreases below the allowable maximum error, the ACS signals the data management system that the maneuver is complete and the pre-cost shutdown sequence is initiated.

The attitude control logic may be implemented by COSMOS if the state of the art permits. Since this is a critical maneuver, and with this design there is no method by which the success of the maneuver may be evaluated and readjusted by spacecraft or ground command, it is recommended that 100% redundant majority logic be used. The use of COSMOS will alleviate the power penalty that might otherwise be incurred. The Jupiter range at which this maneuver takes place is sufficient to ignore the effects of the Jupiter radiation belts.

The precession pulses will be implemented by pneumatic jets driven by appropriate power amplifiers. The design of these amplifiers should be such that they require low power during the standby conditions.

The required vehicle maneuver is relatively simple and consequently the electronics presents no design problem. Some further studies may be required to evaluate the effects of nutation on subsystem performance.

ACS Design - Damper - A viscous ring damper was selected because of its mechanical simplicity and its advantages of no mechanical moving parts, no threshold of performance, insensitivity to change in spin rate, mass properties and temperature, and it does not effect probe static or dynamic balance, or have critical mounting

or geometry requirements. Its principal disadvantages are size and weight which are inversely related to rather long-time constants. In the eventuality that the viscous ring damper proves impractical, a tuned wheel which is much smaller but would increase cost may be used. The performance of the viscous damper has been analyzed and the time constant is given by

$$\tau = \frac{2\pi I_{s}}{F(\gamma)m R^{2} (1 + \lambda)^{2} W_{s}}$$

I = spin moment of inertia

I = transverse moment of inertia

 $F(\gamma)$ = function of wobble Reynolds number 1

m = mass of fluid

R = radius of ring

$$= I_s/I_t - 1$$

 W_{S} = angular rate of probe

With the constants appropriate to the various probes with dynamic attitude control, it appears that time constants of the order of one hour are feasible with a 12-cm diameter damper. Since the period during which the ACS system needs to be active may be as long as six hours, this would appear adequate. With a vehicle operating at 5 rpm, the damping period would extend out to twenty hours. This does not present a problem since there is no attitude control system dependent on the damping on missions with this vehicle angular rate. Furthermore, initial nutation would be due only to tipoff rates and approximately seven days are available for damping.

5. Summary and Results

The structural tolerances used in evaluating disturbances to the probe are listed.

Structural Tolerances (30)					
Nozzle/flange, cm	0.0254				
Flange, cm	0.0762				
Mounting surface, deg	0.1				
Cg location, cm	0.038				
Thrust vector, deg	0.1				
Axial thrust offset (RSS) cm	0.144				
Spin Thrust offset (RSS) cm	0.102				
Probe Parameters					
Spin rate, W _s , rad/sec	10 (0. 5 Pioneer mission)				
Spin torque, m, Newton-Meters	4.07				
Spin inertia, I _s , kg-m ²	12.2				
Thrust, F, Newtons	810				
Thrust period, t _F , sec	15				
Tipoff rate, W _t deg/sec	0.5				
Drift period, t _D , sec	0.5				
I _s /I _t - 1	0.2				
Error Source		Value (deg)			
1. Tipoff error (at 0.5 rad/se	ec) $\frac{W_{t}^{I}_{t}}{W_{s}^{I}_{s}}$	0.8			
2. Drift error	$W_{t}^{c}D$	0.25			
3. Spin-up (tipoff error) (P vector)					
4. Combined 2. & 3.					
5. Spinup (tipoff error) (nut	5. Spinup (tipoff error) (nutation)				
6. Spinup (misalignment) (P vector)					

0.125

7. Spinup (misalignment) (nutation)

Erro	r Source	Value (deg)
8.	Combined 5. & 7. (nutation) RSS	0.66
9.	Velocity dispersion (nutation)	0.014
10.	Velocity dispersion (misalignment)	0.902
11.	Velocity dispersion (combined 9. & 10.)	0.905
12.	Velocity dispersion (combined 11. & 4.) RSS	1.39
13.	Velocity dispersion (combined 11. & 0.5 deg ACS error) RSS	1.040

Items 13 and 12 express expected errors with and without an ACS trim maneuver before delta velocity impulse thrusting. The velocity dispersions have significant effects on trajectory dispersions and result in higher communication power and longer acquisition time. Since one degree is the nominal error budget contribution of this subsystem to the velocity dispersion, the trim maneuver is included in the mission profile

The tipoff rate specified is not necessarily critical if the trim maneuver before delta velocity thrust is included in the mission sequence or the mission uses the spacecraft deflect mode. The value $\left(W_T=1/2\text{ deg/second}\right)$ was selected based on expected and present state of the art. Vela I, II, III, and IV, and OGOI (launches 1963/1964) apparently achieved near this capability at higher separation rates with the use of matched springs. This design parameter is discussed in more detail in Volume II, Section V.B.11 of this report.

APPENDIX G

ELECTRICAL POWER AND PYROTECHNIC SUBSYSTEMS ANALYSIS

E. A. Berkery

June 9, 1972

ELECTRICAL POWER AND PYROTECHNIC SUBSYSTEMS

Power requirements for the probe components are listed in Table G-1. The subsystem design approach for all missions is essentially the same. The functional block diagram of the power and pyrotechnic subsystem is illustrated in Figure G-1. It should be noted that there are two power subsystems: (1) post separation power subsystem consisting of a primary power source, power conditioning, and essentially hard wire distribution; (2) entry power subsystem consisting of a primary power source, separation power filters, and relay power distribution. In addition to the above. there are two long-life low-drain Hg-Zn batteries to provide power for the Accutron timer and the initial preentry pyrotechnic event. The power and pyrotechnic subsystem configuration was based on an evaluation of a study of outer planet probe requirements. Batteries were evaluated on the basis of a nominal Jupiter mission time and temperature profile; this evaluation would not be valid for the application of secondary cells to Saturn and Uranus. Primary batteries were selected and will fly in the dry state until used. The evaluation for the remote activated cells is considered valid for Saturn and Uranus.

Table G-1 Nominal Power Requirements

SUBSYSTEM ELEMENTS	POWER(W)	SUBSYSTEM ELEMENTS	POWER(W)
Data Management	6.9	ACS Electronics	2.0
Memory	12.0	Sun Sensor	2.0
Pyrotechnics	0.5	Planet Sensor	1.0
Instrument Engineering	1.0	Mass Spectrometer	14.0
Vehicle Engineering	1.0	Accelerometer	2.8
Accutron Timer 14 μ(a)		Temperature Gage	1.4
Nutation Damper	(b)	Pressure Gage	1.3
RF Subsystem 14-122			
Power Subsystem Efficiency Postseparation 80%		(a) Self Contained Battery	Hg-Zn
Entry 90%		(b) No Power Requi	red.

Power & Pyrotechnic Subsystems Figure G-1

A. POWER SUBSYSTEM

1. Postseparation Power Subsystem

This subsystem provides power for the attitude control, data handling, and pyrotechnic subsystems for the approximate 6-hr post-separation period allowed for the probe attitude control maneuver. The power subsystem consists of a power source, conversion and regulating equipment. It is activated by the spacecraft before separation. The subsystem will also be activated by spacecraft power during preseparation checkout.

2 Entry Power Subsystem

This subsystem provides power to the data handling, communication, science, and pyrotechnic subsystems. The distribution system consists of relays and power-isolation filters to deliver unregulated battery power to various components. Power conditioning and regulation will be implemented in the individual components as required. This approach is used for the entry configuration to minimize the possibility of common-mode failure and to permit use of lower-power transistors that tend to be less sensitive to radiation.

3. Power Source

There are three fundamentally different power source requirements: Probe bus power source. Accutron timer power source, and preentry pyrotechnics power source. Power for the Accutron timer is provided by a Hg-Zn battery which is required to supply approximately 8 microamperes at 1.6 volts for 30 days. A 40-volt Hg-Zn battery is required to charge two pyrotechnic capacitor banks, hold the charge against leakage for approximately twenty minutes, provide power to operate two or three (detail design dependent) latching relays and some minor pyrotechnic logic. Initial drain of the 40volt Hg-Zn battery is expected to be approximately 40 milliamperes, dropping rapidly to less than one milliampere as the capacitors charge and leakage decreases. The current will rise again to approximately 10 milliamperes for a fraction of a second at the end of the 20-minute soak period. The Hg-Zn battery size and weight are based on standard catalog cells degraded at 7% per year. Approximately 15% increase in volume and weight was allowed for packaging. The Hg-Zn batteries are located near the RTG heaters where the temperature control is more effective and protection against loc temperature conditions is provided. The probe bus power source is required to meet much higher power requirements but has an active life of less than 6.5 hr. Selection of battery type to supply probe power is discussed below.

4. Probe Bus Power Source

Although consideration has been given to various power sources such as RTGs, solar cells, and gas generators for the probe, the choice rapidly narrows to some type of battery. An evaluation of various types has been made and is based on the following mission/test profiles.

- 1) Ni-Cd Secondary Discharged (Table G-2)
 - a) Fly discharged 526 days at 50 to 80°F
 - b) Condition battery at C/10 or greater
 - c) Hold open circuit at less than 70°F for 20 days
 - d) Discharge between 40 and 110°F for 2 hours or less
 - e) System design to 80% depth of discharge
- 2) Ni-Cd Secondary Charged
 - a) Float charge for 526 days at C/100 or greater (loss of 40% expected at temperatures less than 68°F)
 - b) Hold charged on open circuit at less than 70°F for 20 days
 - c) Discharge between 40 and 100°F for 2 hr or less
 - d) System design to 80% depth of discharge
- 3) Ag-Zn Remotely Activated Conventional Design
 - a) Assume two batteries, postseparation battery (6-hr life) and entry battery (40-min life); tubular-reservoir standard gas generator activator; common manifold fill
 - b) Standard design capable of satisfying requirements for up to 24-hour activated life.
- 4) Ag-Zn Remotely Activated Pile Construction
 - a) Assumptions as above, but diaphragm activator mechanism
 - b) Design capable of satisfying requirement for 6-hour activated life; some development needed if activated life is to be significantly extended.
- 5) Ag-Zn Secondary (Table G-3)

In all probability, the only cell design that meets the requirement requires irradiated and cross-linked separator

Table G-2 Ni-Cad Secondary Battery (Float Charge)

Cell Type Rsn#	Cell, amp-hr	New Cells, watt-hr	New Cells, watt-hr/lb (80% DOD)	Degraded watt-hr/1b Discharge/Cruise 20% pkg Wt	Degraded watt-hr/1b Float Charge 20% pkg Wt
3	3.2	84	8.1	6.5	3.2
6	6.0	168	9.3	7.4	3.7
8	8	224	8.1	6.5	3.2
9	9	252	8.8	7.0	3.5
12	12	336	10.0	8.0	4.0
14	14	392	10.0	8.0	4.0
15	15	420	9.1	7.3	3.6
20	25	700	10.4	8.3	4.2
21	20	560	10.1	8.1	4.0
22	22	616	10.6	8.5	4.2
36	36	1010	12.3	9.9	4.9

Note: Basis of Curves for Figure G-2 (Eagle Picher Cell Design 28 volt, 24 Cell Systems).

Table G-3 Ag-Zn Secondary Battery

Cell, amp-hr	Cells, watt-hr	Cells, watt-hr/lb Rated Cells	Cells, watt-hr/lb New Cells	New Battery, watt-hr/lb	Battery Float, watt-hr/1b	Battery Open CKT watt-hr/lb	Battery D/C Stored watt-hr/lb
.8	22	24	31.2	25	5.3	12.2	14.5
1.5	42	30	39	31.2	6.6	15.3	18.1
3.0	84	38	49.5	40	8.4	19.6	23.2
5.3	147	42	54.6	43.7	9.1	21.4	25.3
8.0	223	48	62.4	50	10.5	24.5	29.0
11.5	322	50	65	52	10.9	25.5	30.2
20.0	560	60	78	62.4	13.1	30.5	36.2
30.0	480	63	82	65.6	13.8	32.1	38
45.0	1260	66	86	68.8	14.4	33.7	39.9

Probe Power Source Capability

Figure G-2 Power Source Evaluations

material. General Electric Test Report 67SD337(G5) offers the best data to date. Venus Planetary Explorer tests (by Martin Marietta) will be performed on similar cells.

- 6) Ag-Zn Secondary Float Charge
 - a) High decay rate, expect a loss of approximately 3% per month (approximately 54% total)
 - b) During a 30-day charge stand, expect a 5% loss.
 - c) System design to 80% depth at discharge
- 7) Ag-Zn Secondary Open Circuit Stand
 - a) Assumed charge at launch and left open circuit at 50°F for 526 days
 - b) Battery would lose all capacity and need recharge
 - c) Expect a permanent loss of 26% on recharge
 - d) Expect 5% loss during 30-day charged stand.
 - e) System design to 80% depth at discharge
- 8) Ag-Zn Discharge Stand
 - a) Expect a loss of 17% on recharge
 - b) Expect a 5% loss after 30-day charge stand
 - c) System design to 80% depth at discharge

5. Evaluation

Based on the above decay and degradation rates, tests, and Reference 1 and 2, the curves in Figure G-2 were generated. It should be noted that all Ag-Zn secondary batteries would need separator development for this application. The pile construction battery would need known minor modifications and packaging for life beyond approximately 6 hour. The Ni-Cd batteries have the highest reliability but are excessively heavy. With these considerations and the need for critical recharge and conditioning control for secondary batteries, the remotely activated Ag-Zn battery was selected for this application. Consideration of standard versus pile construction indicated approximately 50% weight could be saved with the latter. The state of the art indicates that all development necessary for this application should be completed and available for the pile construction battery by 1975. Based on the above, considerations, the pile construction battery is recommended for this application and the weights indicated in Figure G-2 have been used in the current estimates.

The remote activated Ag-Zn battery requires no significant development to meet the electrical requirements; however, a nine-day unused open circuit requirement subsequent to discharge presents a concern with respect to gassing. Silver-zinc couples generate oxygen and hydrogen during any wet stand operation. Hydrogen is by far the major contributor to the evolved gas and results from thermodynamically unstable zinc in contact with KOH and the negative plate potential being above the hydrogen potential. In addition, internal and external shorts will contribute to the gassing.

The battery design will include the following features to greatly reduce the gassing and also provide the capability of storing the gasses generated to safe internal pressure.

- 1) Additives to the negative plate 2-4% mercuric oxide
- 2) High KOH concentration 40-45%
- 3) Ion exhange irradiated separators. For example: Permion 307, to provide 7-day wet stand life
- 4) Flap valve on each cell that permits activation, but prevents low resistance intercell leakage and allows gasses to filter into the manifold.

The cooling gasses of the gas generator subsequent to activation reduces the working pressure of the battery during discharge below the activator design pressure. The gasses by the cells works into the electrolyte container area pushing back the activator and gradually increasing the internal pressure of the battery. The design pressure will not be exceeded and the battery can be hermetically sealed.

Long-Life Remotely Activated Batteries

An alternative approach would use standard remotely activated batteries with some modifications for longer life. This would

eliminate a significant problem of energizing pyrotechnics after postseparation coast. The degradation and life characteristics are, in general, applicable to all primary Ag-Zn designs. The fill manifold is a development for standard construction.

7. Remotely Activated Ag-Zn Oxide Batteries

Current designs of remotely activated batteries for space application generally employ an electrolyte reservoir separated from the dry cells by a frangible diaphragm. Activation is accomplished by initiating a trigger mechanism or explosive squib that introduces pressurized gas to the electrolyte compartment, thus forcing the electrolyte into the battery cell compartment.

Typically, separator materials used in standard designs are not semipermeable membranes that permit long activated life, but hydrophylic nonwoven materials capable of fast activation. Activated stand life exceeding 24 hours should not be expected.

Dry Stand Loss - Losses usually result from loss of peroxide on the positive, which is accelerated at high temperature. Figure G-3 shows the effect of temperature and indicates capacity, at any temperature, will decay to a mimimum of 50% of rated value, depending on storage time. Dry storage loss is a function of humidity control, temperature, plate processing, and particularly cell materails and fabricating techniques. Most battery manufacturers are aware of these problems and have solved them. Typical data on the Poseidon missile program indicates no loss of capacity during a 91-month storage.

Activated Stand Life - There are two major problems in extending activated stand life of remotely activated batteries.

- 1) Electrolyte Paths Standard designs use a manifold across the cells that permits simultaneous activation of all cells. After activation, the manifold may remain flooded and, at best, high-resistance electrolyte all paths exist between cells. Resulting potentials between cells are high enough to permit Zn precipitation along the electrolyte paths, resulting in massive shorts and subsequent discharge of the battery.
- 2) Separator Material Absorbent separators in remotely activated batteries serve two major purposes: activation times of less than 2 sec; higher current density (i.e., voltage current

Figure G-3 Dry-Storage Charge-Retention Characteristics

characteristics). The major disadvantage is that it is not a semipermeable membrane and oxidation occurs at a high rate, resulting in self-discharge.

Weight Shift Due to Activation - Upon activation, electrolyte transfers from the reservoit to the cells. The quantity of electrolyte varies with capacity and separator material. As a rule of thumb, 4.2 ml/A-h/cell or 5.9 gm/A-h/cell can be used (e.g., 20 A-h 20-cell battery - 2360 gm KOH. The weight shift depends on the battery design. With a tubular reservoir wrapped around the cell pack, as described in the Eagle Picher data (Ref G-3), electrolyte would transfer from the periphery to the center of the black box. In case of a higher-energy-density design, as shown in Figure G-4, transfer approximates a shift from the top half of the black box to the bottom half.

Design Concepts for Long Wet Stand - A 7-day wet-stand life has been achieved with the design shown in Figure G-5 and G-6. Figure G-5 shows a high energy density design in which the cell case is a half shell. High energy density is achieved by elimination of the double cell wall resulting from normal cell construction. The center wall also can be as thin as 0.0254 cm (0.01 in.).

The half shells are assembled so that the flexible member is directly below the open section. Design tolerances provide a crude seal at this point. When the battery is activated through the manifold, activation pressures deflect the flexible member, permitting electrolyte to enter the cell. At equilibrium conditions, a pressure balance occurs across the flexible member and the joint closes causing very high resistance paths between cells, thus minimizing electrolyte shorts.

To eliminate cell degradation caused by separator breakdown, a semipermeable membrane would be included in the cell pack. Activation times would increase to 20 seconds and wet-stand life to 7 days.

Figure G-6 shows a more conservative design that increases energy density, but eliminates intercell shorting. Electrolyte enters tube A and the first cell at the level of tube B. It travels up tube B across to the next cell and down tube A of the second cell. This process is repeated until the last cell is filled. Excess electrolyte continues to move into a final compartment where it is centrifuged into an absorbent material. The activation mechanism is designed so activating gasses follow through with the electrolyte

Note: Gas generated by initiator increases internal pressure of mechanism until burst diaphragms open. Electrolyte flows into manifold under pressure of distending flexible diaphragm.

Figure G-4 High Energy Density Activation Mechanism for Ag-Zn Batteries

System designed & qualified for 7-day wet-stand requirement. Note:

Figure G-5 Remotely Activated 30-Day Wet-Stand Design Concept 1

Figure G-6 Remotely Activated 30-Day Wet-Stand Design Concept 2

and purge the tubes and intertell paths of electrolyte. This design, like the other, will operate in any attitude. As before, separator material would be changed to a semipermeable membrane.

Both designs were developed for the Royal Aircraft Establishment, England, for a 7-day activated mission. It is expected that the design in Figure G-6 could exceed this requirement, but a 30-day stand would be a marginal concept. Conceptually, a revised design would be capable of providing a 30-day wet stand with a high degree of confidence.

Watt-Hour Design Margins - If it is assumed that electrolyte leakage paths can be eliminated, and the whole design concept is based on this assumption, the following margins can be applied when sizing the battery.

With up-to-date design methods, a 40 W-h/lb (pile type) battery can be manufactured.

Start with 40 W-h/1b.

Apply degradation rates:

- a) Dry stand loss 3% per year below 90°F; it would be undesirable to fly the battery at a higher temperature;
- b) Activated stand loss 0.5% per day;
- c) If sterilization is required, loss is 25%, with no further loss because of a dry-charged stand.

Items a) and b) can be supported by characteristics of primary Ag-Zn batteries like those used on Titan III and Biosatellite, and forpedo batteries. Item c) causes loss of peroxide, which in a normal design would be 50%. However, because this loss is known, the Zn plate capacity would be reduced accordingly, and the weight gained would be transferred to the positive plate.

Temperature Performance Activated - Normal operating temperatures should be 30 to 80°F. However, if load requirements are known, the battery could be designed to perform at lower temperatures around 10°F. The high-temperature restraint is not required on discharge, but has a degrading factor on the stand.

B, PYROTECHNIC SUBSYSTEM

The pyrotechnic subsystem is similar to designs already applied to several space vehicles such as Mariner and Viking. Specific

constraints and devices considered for outer planet probe designs were principally derived from Viking, which has severe restrictions on weight and a radiation environment. The pyrotechnic subsystem consists of power conditioning equipment, relay switching control, control logic, and capacitor banks for high pulse discharge.

The pyrotechnic control system derives power and initiating signal from several sources.

- 1) Separation events Initial charging of the capacitor banks and initiation signal are provided by the spacecraft. After the postseparation battery has been activated, power is then derived from the probe postseparation battery.
- 2) Postseparation events Power is derived from the probe postseparation battery and initiation signals from the probe data management system.
- 3) Preentry battery event Power is derived from a 40-volt Hg-Zn battery. This is the only function for this battery, which must maintain the capacitors on charge for about 20 minutes. The initiation signal is derived from the electromechanical (Accutron) timer.
- 4) Preentry events Power is derived from the probe preentry battery. Initiation signals are provided by the data management system.

1. Power

Except for the entry battery pyro event, all power conditioning required in the pyrotechnic control subsystem is provided by an internal power supply. Outputs are not regulated and have a tolerance of $\pm 10\%$. The outputs consist of two 40-volt windings completely isolated from each other and from all other windings. Voltages provided for internal use are tabulated.

Capacitor charging	+40
Relay switching	+28
Logic circuitry	+5
Digital interface circuitry	+5

The supply has an output capability of approximately 50 W and a standby power dissipation if 450 mW. Because the supply is essential in the standby condition at all times, except for approximately 5 seconds after each event, the assumed average power requirement is 0.5 W.

2. Relay Assembly

Magnetic latching relays are used for pyro firing functions as well as for safing and arming. This is a deviation from the Viking approach, which uses SCRs for firing. The modification results from the susceptibility of SCRs to the high-radiation environment near Jupiter. The relay selected for this purpose and for estimated weight and size is Potter Bromfield Type HL 4125 (MIL-R-5757). The relays weigh 0.29 kg (0.063 lb) with a volume of 11.12 cm³. The present configuration assumes one relay for each side of the redundant squib and one for safing and arming in the common lead. This approach requires three relays for each event.

Considerations to be evaluated for this design are the effect of contact bounce on the operation of the squib, possible fusing of contacts (which would leave the capacitor banks connected to the squib circuit), and testing problems. The contact fusing problem could be eliminated by adding another relay for each event and performing safing and arming directly in series with the contacts of the initiator relay. An alternative configuration could use the common-lead relay for firing. However, this would accentuate the effects of contact bounce on the performance reliability. Testing may be a severe problem because the first operation is likely to cause significant damage to relay contacts. A simulated test that measures contact bounce and contact resistance may be sufficient. The effect on the squibs cannot be predicted at this time. relay manufacturers are reluctant to reduce the specification on contact bounce below 2 msec. Firing time of the squib is approximately 0.4 msec and further study will be required to evaluate this problem. Present Viking design calls for operation of the relay with 8 to 18 volts applied across the coil. A 1600-ohm coil design ensures that sufficient power is available to operate the relay from the low-energy Hg-Zn battery, which initiates the preentry phase of the mission.

3. Capacitor Banks

Each capacitor bank contains six $82~\mu f$ capacitors rated at 50 volts. These wet-slug tantalum capacitors are required to deliver 150 mJ in 5 msec into a 1-ohm circuit. Each capacitor bank is required to fire six initiators, one at a time. No two initiators can be

fired by a capacitor bank within a 12-second period. The design is planned to permit charging all capacitor banks from either side of the power supply through charging resistors. Failure of one or several banks will not produce a serious load on the power supply. One possible exception to the resistive cross connection may be the capacitor banks that fire the entry battery pyrotechnics because these are energized by a low-capacity long-life Hg-Zn battery.

The design application of the pyrotechnic subsystem does not depart significantly from state-of-the-art designs, in particular, the Viking design. One aspect that must be given further consideration, because of the nature of the probe mission profile, is the conditioning of the pyrotechnic capacitor banks. Because the various probe designs will have been electrically quiescent for approximately 18 months before separation, the capacitor banks will require reconditioning for approximately 1 hour. A more critical requirement will occur after the quiescent coast period. This represents a significant problem because of the lack of available The design approach is to provide a 40-volt Hg-Zn battery that will provide charging current and maintain charge for approximately 20 minutes on two capacitor banks. These capacitor banks will then provide the energy to fire the first entry pyrotechnic. The actuator that initiates the capacity charging and provides the firing control will be mechanically closed contacts in the electrimechanical (Accutron) timer. A 40-volt battery will be used to avoid the need for power conditioning. The only function of this battery is to provide charge current to the capacitor banks, leakage current during the conditioning period, and power to operate the relay initiator logic.

4. Interface

Except for the entry battery pyrotechnic event, all pyrotechnic event control will be provided through the data management subsystem. The control signal will be in the form of parallel digital address, enable, fire, and safe commands. The pyrotechnic subsystem will be enabled by applying power through a power control relay in the power distribution control.

C. REFERENCES

- G-1 Evaluation Program for Spacecraft Secondary Cell. Prepared for GSFC Contract W12,297, Quality Evaluation Laboratory NAD, Crane, Indiana.
- G-2 C. F. Palandati: Electron Radiation on Effects on Silver Zinc Cells. X-716-68-136. GSFC, 1968.
- G-3 E. M. Morse: Eagle-Pincher Silver Zinc Automatically Activated Batteries. Bulletin No. 101, Eagle-Picher.
- G-4 J. A. Sanders: Remote Activated Batteries. Memo 0455-71-95, September 9, 1971.
- G-5 J. A. Sanders and D.R. Seals: Test Report on Heat Sterilizable Silver-Fine Batteries. General Electric Co., 67SD337.

APPENDIX H

DATA HANDLING SUBSYSTEM ANALYSIS AND DEFINITION

E. A. Berkery

June 20, 1972

The principal problem in developing a rigorous evaluation of data handling subsystems for a system level study is that the detail requirements which provide the major constraints on the DHS are generally absent. The most significant interfaces (science instruments) lack detail in the sense of synchronization requirements, internal (instrument) processing capability, diagnostic and control requirements. The data that are available, such as science bit rate, measurement duration, intrascience requirements (i.e., simultaneous measurements), are subject to change with changing definition of mission profiles and instrument configurations. Consequently, some generalizations have been made and arbitrary interface descriptions have been assumed where it is necessary to provide a definitive interface. It is understood that the ultimate specifications of the various subsystems could perturb this evaluation; however, the performance required of the DHS is well within the state of the art and no serious obstacle is expected in a detail design of this subsystem.

Sequence of Events - An approximate sequence of events which is applicable to all missions, is shown in Table H-1, During the pre-separation period the probe DHS is controlled by the spacecraft. The primary function during this period will be to decode the serial digital commands from the spacecraft, verify the commands, perform the commands (component turn on, warmup timing, diagnostics), and relay the resulting data to the spacecraft. Since command loop time delay between the ground station and the spacecraft is approximately 1.5 hr, a reasonably automated checkout is desirable. Checkout may be performed at any time before separation; however, it is desirable to limit the number of times the probe is powered up. A pre-separation checkout period of six hours would allow for several probe revision and checkout cycles. The modification to the probe subsystems at this time will consist of switching out components that exhibit catastrophic failure symptoms, assuming a partial data return is still achievable. Accutron timer will be started before separation at some time $t = E - \tau$. This timer is set for period τ before launch and cannot be reprogrammed in flight. The only function for the Accutron timer is to initiate the entry phase by activating the entry battery. During the immediate (≈ 6 hr) post-separation sequence, the DHS sequencing logic controls the probe. The ACS subsystem is enabled for the entry orientation maneuver by the DHS. When the maneuver is completed (attitude error less than 3°), the ACS provides a signal that initiates the shutdown of that subsystem by

Table H-1 Nominal DHS Sequence of Events

TIME	FUNCTION	COMMAND SOURCE
S - 6 hr	Energize probe power bus and DHS	S/C DHS
	Start timer	S/C DHS
	Exercise probe functions/checkout	S/C DHS, Probe DHS
S - 1 min	Activate probe battery	S/C DHS
S - 0	Separate	S/C DHS
s + 0		
	Perform spinup, V ACS maneuver	DHS
	Engineering measurements, RF transmission	
S + 6 hr	Initiate coast shutdown sequence	ACS logic
S + 6 + hr	Complete coast shutdown sequence	DHS
E - 85 min	Charge pyrotechnic banks	Coast timer
E - 65 min	Activate descent battery	Coast timer
	Activate DHS timer/sequencer	Bus voltage sensor
E - 45 min	Initiate Pre-entry sequence	DHS
E + 20 sec	Initiate descent sequence (100 g)	G-switch
	Measure/store science/engineering data	DHS
E + 3 min	Resume transmission of measurements and stored data	DHS

the DHS. Obviously, the ACS electronic functions could be included in the DHS; however, it is preferable for overall mission reliability to keep them separate, as will be discussed below. Subsequent to the ACS maneuver, the transmitter is energized and data stored during the post-separation activity is transmitted to the spacecraft. When the transmission is completed, the various subsystems are shut down. The DHS shuts itself down by removing its own power. Delay and signal verification approaches will be used for the shutdown sequence since it constitutes a lock-down mode.

During the coast period, the Accutron timer is the only active electronic component. Power ($\approx\!10~\mu$ watts) is supplied by a mercury-zinc battery. The mechanical contacts of the timer provide two events: (1) initiation of capacitor bank charging and (2) firing the pyrotechnics to activate the entry battery. The activation of the entry battery initiates a sequence that enables the DHS. All subsequent events are controlled by the DHS timing and sequencing. During the entry phase, the trajectory uncertainties are removed by sensing deceleration and initiating the descent program.

Configuration Alternatives - The configuration of the data handling subsystem was based on studies of probe requirements for Venus and the outer planets. Consideration was given to a programmable processor controlled system and a hard-wired system. These approaches are exemplified by an Adaptive Control and Data Processing Group (ACDPG) and Control and Data Processing Unit (CDPU). The ACDPG (Figure H-1) consists of a computer and a Processor Interface Unit (PIU) that includes all the functional blocks except the computer. The selected computer is a nonredundant version of the Advanced Onboard Processor (AOP) which is being considered by Martin Marietta for outer planet spacecraft. It employs a plated wire memory and bipolar (non-MOS) LSl circuits. An increase of approximately 12 lb and 4.0 watts over the CDPU version could be traded off against savings in weight and power in attitude control and the instruments by the use of a system like the ACDPG. Since the AOP computer is designed for a redundant configuration and some of the electronics is dedicated to redundancy functions, it may be expected that an additional 10 to 30% decrease in weight and power could be achieved for the computer.

The evaluation of the CDPU (Fig. H-2) involved a rather pragmatic evaluation of mission viability that considered the fluctuating instrument designs with consequent changes in interface requirements, development costs, schedule, and practical reliability

Figure H-1 Data Handling Subsystem, General Purpose Approach

Figure H-2 Data Handling Subsystem Diagram, Special Purpose Approach

aspects. The major functional requirements of the data management subsystem are shown in Table H-2. Except for the entry accelerometer instrument, there are no significant storage requirements. For any specific atmosphere, there is a fixed sequence and format. Consequently, the decision-making capability and processing complexity of the subsystem tend to be minimized. The decision as to the locale of the various functions must consider the fluctuation of the science processing requirements during the development of the instruments as well as the significant differences between instruments. The high radiation, g-stress and long life environment and the value of partial data return provide a basis for a decentralized DHS. The remaining functions, which are necessarily common to all subsystems (i.e., formatting and sequencing), should be well protected from failure by redundancy. A decentralized subsystem should be cost and schedule effective through the development program.

The design of a DHS, which primarily serves to provide formatting, sequencing and encoding, may be implemented from available qualified components, integrated circuits and piece parts. Selection of such devices will be heavily influenced by established reliability and radiation resistance.

Consideration of atmospheric uncertainties indicate a need for adaptive functions in the subsystem that could conceivably optimize the data return. With the present instrument package, the advantages of optimization with respect to the data return and probe design do not appear to be significant. Furthermore, the information available (i.e., temperature and pressure) are not sufficiently well known to make a valid format decision at the required altitudes.

As a result of the above considerations and comparisons the recommended approach is the special purpose CDPU. The alternative configuration may be reconsidered if there is extensive elaboration of the instrument payload or a flexible inflight programmable system is required.

Selected Configuration - The functional block diagram of the special purpose DHS is shown in Figure H-2. The DHS performs only the necessarily centralized functions of timing, sequencing, and formatting. The subsystem is energized twice, by the spacecraft before pre-separation checkout and by the coast timer/bus voltage sensor during the pre-entry period. The probe bus voltage sensor has an additional function in that it provides controls so that

Table H-2 Data Management Functional Requirements

Function	Application	Function Locale	Comments
Timing	Sequencing	DHS	Hardwire/Programmable
	Synchronization	DHS	Sync Bus
Data Storage	Accelerometer	DHS	Blackout Data
	Engineering	DHS	Probe Readiness
Data Processing	Accelerometer	DHS/Inst	Turbulence
	NMS	Inst	A/D
	Pressure	DHS/Inst	A/D
,	Temperature	DHS/Inst	A/D
	Engineering	DHS	A/D
Sequencing/ Format	Pre-entry Probe Readiness	DHS	Coast Timer/Battery Initiate
	Data Transmission	DHS	Engineering Data
	Post-Entry Blackout	DHS	G-Switch Initiate
	Probe Readiness	DHS	Engineering/Accelerometer Data
	Data Transmission	DHS	Descent Format

the DHS is disabled until full power is on the bus, and signals are available to ensure that the internal states of the DHS are properly set. Once energized the timer and sequence generator control the probe functions. The DHS receives two additional commands: (1) the accelerometer signals the presence of significant g-level to prevent overloading the science data storage memory with useless pre-entry acceleration data; (2) g-switches provide signals to initiate the descent format.

It is assumed that the science instruments will have ten- or 12bit buffer storage output to hold the measurements and signal the state of the instrument. Information is shifted from these buffers into the appropriate DHS memory registers. Although this procedure produces some redundancy in the electronics, it facilitates the simultaneous measurements that must be made by the science instruments and will also reduce design schedule interference between probe engineering design and changing science objectives. The bridge completion networks, analog multiplexer and A/D converter, are provided for engineering measurements. Standard voltage cells (chemical cells or zenor diodes) are provided for calibration and measurement purposes. (The difficulty of maintaining a voltage standard for as much as eight years is recognized; however, the probe may be calibrated during preseparation checkout. This will ensure that probe accuracy is approximately equal to the accuracy of the spacecraft.) The data in the DHS buffer storage is then sequenced into the data stream and convolutionally encoded.

In addition to the science instruments, the DHS controls vehicle pyrotechnics, power, ACS, and RF transmission. Their functions are indicated by the "pyro" and "power" control interfaces. Incoming commands from the accelerometer and g-switches are indicated by the "probe control bilevels."

The physical characteristics were based on estimates of devices required for each function. Included in this estimate were 14-lead flat packs, LSI packages, hybrids, transistors, diodes, resistors, capacitors (small and large tantulum) coils, and transformers. Card surface area was allocated for each device and total surface area calculated. Board thickness of 0.75 cm and a density of 0.93 gm/cm³ were assumed. These estimates resulted in the following physical characteristics: volume 2320 cm³, weight 2.13 kg, power, 6.9 W.

The weight of the memory was based on an estimate from Electronic Memories (Division of Electronis Memories and Magnetics Corp). The estimate for a 7 kb bipolar, IC memory (8 kb card) follows: volume/6.5 x 11.4 x 0.64 cm, weight 0.23 kg, power 6 watts. These data have been used as a basic building block for the cost of memory capacity.

The resulting physical and electrical definition of the nominal Jupiter probe DHS and is volume 2575 $\rm cm^3$, weight 2.59 kg, power 18.9 watts.

Redundancy and Coding - The use of redundancy has not received significant attention in the probe electronics design; however, it is realistic to assume that with the long-life, radiation environment and volatile bipolar IC memory electronics, some efforts will be required in this area. Redundancy techniques may involve the design of the DHS to a greater extent than other systems because of the central control function. While passive (majority vote logic, derating, etc.) redundancy techniques may be applied effectively to many types of circuitry, technologies such as power subsystems require failure sensing circuitry and switching, Inasmuch as the DHS already controls power switching, the failure detection/correction functions may be more effectively and reliably implemented in the DHS subsystem.

Reliability improvement internal to the DHS would primarily use passive approaches particularly in the critical timing and sequencing counters and logic which provide common control functions. The power requirements of the blackout data storage memories would tend to constrain a reliability improvement approach to the use of a parity bit per word; the relatively low capacity buffer memories would use passive techniques.

The data encoding requirements arise because of relay link requirements rather than probe requirements. A noncoherent FSK system and especially a binary system will give poor performance when compared to that attainable according to the Shannon Theory. In order to offset this deficiency error correcting codes are used.

Convolutional codes are easiest to implement and provide the best performance; therefore, only convolutional codes were considered in this study. Either long or short constraint length codes may be used, depending upon the amount of processing, if any, to be done on the spacecraft. Spacecraft options range from digitally sampling the received signal and recording the data for relay to Earth, to fully detecting and decoding the signal onboard the spacecraft. It was decided, therefore, to assume use of a short constraint length $\kappa=8$ and rate $\frac{1}{2}$ code to be compatible with any of the available spacecraft signal processing options.

APPENDIX I

MONTE CARLO DEFLECTION DISPERSION ANALYSIS

E. D. Vogt

June 15, 1972

A Monte Carlo computer program is used to compute the dispersions in communication and entry parameters caused by errors and uncertainties at the time of the deflection maneuver. The deflection maneuver itself is defined in detail in subsection IV.D.1 of Volume II of this report. A summary of the Monte Carlo technique is supplied in this appendix.

A. ERROR SOURCES

Two distinct types of errors are identified as causing dispersions from the nominal entry parameters. First, because of errors in the guidance and navigation process prior to the deflection maneuver, there are uncertainties in the spacecraft state at deflection. Secondly, there will be execution errors made by the spacecraft and probe in the implementation of the required maneuver.

Guidance and Navigation Uncertainties

Quantitative measures of the uncertainties in the spacecraft state at the deflection point are provided by the control and knowledge covariances* at that point. The control covariance P_c is a 6 \times 6 matrix defined by

$$P_{c} = E \left[\left(X_{act} - X_{nom} \right) \left(X_{act} - X_{nom} \right)^{T} \right]$$

where E is the expectation operator and $X_{\rm act}$ is the random variable vector describing the actual state (6 vector of position and velocity) of the spacecraft and $X_{\rm nom}$ is the nominal state of the spacecraft. $P_{\rm c}$ thus gives a measure of the probabilistic deviation of the actual deflection state from the nominal state.

The generation of the control covariance proceeds as follows. It is assumed that the control errors result solely from errors at the last midcourse correction prior to deflection. A further assumption is made that the last midcourse correction is small enough that the execution errors are dominated by the knowledge errors at the time of the correction. A large a priori knowledge covariance is assumed at 25 days prior to the last midcourse maneuver when the tracking for that midcourse is initiated. The a priori knowledge covariance is reduced by processing simulated measurements for 25 days to determine the knowledge covariance at the midcourse. This covariance is then simply propagated (processing no measurements) over the last 13 days to generate the control covariance at the deflection point.

^{*}The control and knowledge covariances referred to in this report correspond to the correlation matrix X of the actual deviation vector and the correlation rating E of the estimated errors in Battin's notation of Reference 1. General analytic details of the formulation of these mathematical tools may be found in this reference.

The knowledge covariance \mathbf{P}_{k} at any point is defined mathematically as:

$$P_k = E \left[\left(X_{est} - X_{act} \right) \left(X_{est} - X_{act} \right)^T \right]$$

where $X_{\rm est}$ is the random variable representing possible estimated states if $X_{\rm act}$ is the actual state. Thus, $P_{\rm k}$ provides a quantitative measure of the estimation error to be expected at the time of deflection.

The knowledge covariance is generated similarly to the control covariance. Tracking begins at 38 days prior to deflection and measurement processing continues to one day prior to deflection. The knowledge covariance at that time (the deflection maneuver computation time) is then simply propagated to the nominal deflection time.

Thus, the knowledge and control uncertainties are really functions of the approach orbit determination (OD) processes. Since the orbit determination process is highly dependent upon the detection of the gravitational effects of Jupiter, the knowledge and control uncertainties decrease as the deflection maneuver is performed nearer Jupiter.

Figure I-1 presents a summary of the control and knowledge covariance computations. The pertinent data used in generating the uncertainties is supplied in Figure I-1C along with a pictorial representation of the process. Deflection radii of 10-, 30-, and 50-million kilometers were studied. These radii correspond to time intervals of approximately 8, 25, and 44 days before encounter. For any of the deflection radii, the tracking was initiated 38 days before deflection tracking through 25 days to generate the midcourse knowledge covariance. That covariance was then propagated forward to deflection to generate the deflection control covariance. Tracking was reinitiated on the midcourse knowledge covariance and carried through to one day prior to deflection. This was then simply propagated over the final day to generate the deflection knowledge covariance.

The dominant part of the deflection covariance matrice is the upper left 3×3 partition defining position uncertainties. This may be rotated into the standard RST coordinate system. Then the one sigma uncertainty in the spatial miss or the impact parameter B is defined in the TR plane as indicated in Figure I-1A. The one-sigma uncertainty in the S direction divided by the hyperbolic excess velocity produces the one-sigma time of flight uncertainty given in Figure I-1B.

Figure I-1 Knowledge and Control Uncertainties at Deflection

The net effect of decreasing the deflection radius on the knowledge and control covariances is evident. Decreasing the deflection radius from 50- to 30-million kilometers reduces the uncertainties by approximately one-third. Decreasing the deflection radius from 30 to 10 million kilometers produces a decrease in uncertainties of approximately one-fourth.

An intuitive feeling for the exact use of knowledge and control covariances may be gained by referring to section B which describes the analytical technique used in the Monte Carlo dispersion analysis program.

2. Execution Errors

The second source of errors analyzed results from execution errors made in implementing the actual maneuvers required. The types of maneuvers encountered in the three modes identified earlier are:

- 1) Probe deflection maneuver:
- 2) Spacecraft deflection maneuver;
- 3) Probe release and/or orientation.

The error models used to analyze each of these maneuvers are described in the following paragraphs.

The purpose of the probe or spacecraft deflection maneuvers is to add a commanded velocity increment Δv to the current probe or spacecraft state. The actual velocity increment imparted to the body will differ from the commanded value by an amount $\delta\Delta v$ that represents the contribution due to execution errors. The execution error model used in this study is defined by four independent error sources.

The first error source is called the proportionality error and is in the direction of the velocity correction, Δv , with magnitude determined by the proportionality factor, k:

$$\frac{\delta \Delta \mathbf{v}_{\mathbf{K}}}{} = \mathbf{k} \ \underline{\Delta \mathbf{v}}$$

A second error source in the direction of Δv but independent of its magnitude, is the resolution error, s, that corresponds to a thrust tailoff error from the thrusters:

$$\underline{\delta \Delta \mathbf{v}}_{\mathbf{S}} = \frac{\mathbf{S}}{\Delta \mathbf{v}} \quad \Delta \mathbf{v}$$

The other error sources are pointing direction errors. The first of these is a pointing error angle, α , measured in a plane parallel to the ecliptic plane (for Jupiter missions, approximately the orbital plane), and along a vector orthogonal to the velocity correction vector, $\Delta \mathbf{v}$. If \mathbf{i} , \mathbf{j} , \mathbf{k} form the unit triad in the ecliptic system, then for small angles, α , the velocity error caused by the in-plane pointing error is given by

$$\frac{\delta \Delta \mathbf{v}_{\alpha}}{\Delta \mathbf{v}_{\alpha}} = \mathbf{c} \Delta \mathbf{v} \alpha \left[\Delta \mathbf{v}_{\mathbf{y}} \mathbf{i} - \Delta \mathbf{v}_{\mathbf{x}} \mathbf{j} \right]$$

where $\Delta v = \Delta v_x + \Delta v_y + \Delta v_z + \Delta v_z + \Delta v_z + \Delta v_y^2$ and $c = (\Delta v_x^2 + \Delta v_y^2)^{-1/2}$. The second pointing error, called the out-of-plane error defines the velocity error that is orthogonal to both $\delta \Delta v_x$ and the velocity

increment vector, $\underline{\Delta v}$. Again, for small angles, β , the velocity error resulting from this pointing error, referenced to the ecliptic system, is given by

$$\frac{\delta \Delta \mathbf{v}_{\beta}}{\delta \mathbf{v}_{\beta}} = \beta \mathbf{c} \quad \left[\Delta \mathbf{v}_{\mathbf{x}} \Delta \mathbf{v}_{\mathbf{z}} \mathbf{i} + \Delta \mathbf{v}_{\mathbf{y}} \Delta \mathbf{v}_{\mathbf{z}} \mathbf{j} - \frac{1}{C^{2}} \mathbf{k} \right]$$

Then the total execution error resulting from a proportionality error, k, resolution error, s, and pointing errors, α and β , is given by the sum of these errors

$$\frac{\delta \Delta \mathbf{v}}{\delta \mathbf{v}} = \frac{\delta \Delta \mathbf{v}}{\delta \mathbf{k}} + \frac{\delta \Delta \mathbf{v}}{\delta \mathbf{v}} + \frac{\delta \Delta \mathbf{v}}{\delta \mathbf{v}}$$

The mathematical model used to describe velocity increment errors is the same for either spacecraft or probe. The individual magnitudes of the execution error sources, k, s, α , and β , may be varied, however, for individual characteristics of the probe or spacecraft. In general, the Pioneer pointing accuracy is 5% of the angle rotated off Earth lock, the TOPS error is considered to be 1 degree (3 σ).

The probe release and/or orientation error is essentially involved with simply aligning the probe axis for its zero degree relative angle of attack at entry. This corresponds to the maneuver by which the probe is released from the spacecraft in the Mode 3/ Deflect Spacecraft sequence or to the probe self-reorientation maneuver in the Mode 1/Deflect Probe scheme. The current mathematical model for this type of maneuver is based on a single pointing error referenced to the desired direction.

Let $\mathbf{u}_{\mathbf{D}}$ denote the desired direction for the probe axis. Define

$$\frac{\mathbf{v_1}}{\mathbf{r}} = \frac{\mathbf{r} \times \mathbf{u_A}}{|\mathbf{r} \times \mathbf{u_A}|}$$

$$v_2 = u_A \times v_1$$

Then \underline{v}_1 and \underline{v}_2 are unit vectors in the plane normal to the desired direction \underline{u}_A . An arbitrary unit vector in that plane may then be written.

$$\underline{\mathbf{x}} = \underline{\mathbf{v}}_1 \cos \theta + \underline{\mathbf{v}}_2 \sin \theta$$

where θ is a random variable chosen from a uniform distribution over the interval $(0, 2\pi)$. If the orientation pointing error is to be of magnitude δ , then the actual pointing direction resulting from the error is given by

$$\underline{\mathbf{u}}_{A} = \underline{\mathbf{u}}_{D} \cos \delta + \underline{\mathbf{x}} \sin \delta$$

B. ANALYTICAL TECHNIQUE

A Monte Carlo technique is used to convert the errors associated with the deflection maneuver into dispersions in the critical mission parameters. The Monte Carlo procedure will be defined in detail for the Mode 1/Deflect Probe deflection scheme. The modifications for the Mode 2/Shared Deflection and Mode 3/Deflect Spacecraft schemes are then easily explained.

The Monte Carlo technique used in this study consists of generating a large number of sample probe and spacecraft trajectories consistent with assumed statistics of the knowledge and control uncertainties and execution errors. These trajectories are then propagated to certain mission time points (probe acquisition by spacecraft, entry, and selected intermediate points), and the critical mission parameters are evaluated. Because each sample spacecraft and probe trajectory will differ from the nominal (errorless) ones, the critical parameters will also differ. The data in dispersions in critical mission parameters are then analyzed by empirical formulas, assuming normal distributions

to establish mean and three sigma deviations in each critical parameter for each selected time point. The computational flow, outlined in Figure I-2, may be broken up into three main components that are discussed in detail.

1. Preliminary Computations

The preliminary computations generally comprise the determination of the nominal trajectories and preparation for the selection of the perturbed trajectories. The nominal deflection maneuver is first computed, which for the given hyperbolic excess velocity (equivalently the given launch date/arrival date) and desired deflection radius satisfies the desired entry conditions and communication geometry. The knowledge and control covariances, P_k and P_c , are then computed from an orbit determination program in which the procedure described in section A is used. Finally, the execution error uncertainties, σ_k , σ_s , σ_α , σ_β , σ_δ , are selected on the basis of the spacecraft used, the nominal geometry involved (such as the rotation off Earth lock required to implement the maneuver), and the magnitude of errors requiring analysis.

2. The Sampling Procedure

The bulk of the dispersion analysis is concerned with the generation of the statistically consistent ensemble of spacecraft-probe trajectory samples. For each sample, the first problem (listed in Figure I-2) is to generate reasonable deviation vectors, δX_k and δX_c , from the knowledge and control covariances, P_k and P_c . This sampling is done as follows.

Let P represent P_k or P_c . Then, since P is positive definite, it may be diagonalized.

where D = diag $(d_1^2, d_2^2, \ldots, d_6^2)$, T is the orthonormal matrix of the eigenvectors of P, and the superscript T denotes the matrix transpose operation. The elements of D are written as squares to indicate they are necessarily positive numbers.

I. PRELIMINARY COMPUTATIONS

- A. Read in nominal spacecraft deflection state X nom desired entry angle, γ , and lead angle, λ , knowledge and control covariance matrices, P_k and P_c , execution error model uncertainties, σ_k , σ_s , σ_α , σ_β , σ_δ .
- B. Compute nominal deflection maneuver and parameters

II. SAMPLING PROCEDURE

Generate large number (N \geq 100) of sample off-nominal cases. For each case --

- A. Sample knowledge and control covariances to obtain the deviation vectors, δX_k and δX_c .
- B. Form the actual and estimated spacecraft states

$$X_{act} = X_{nom} + \delta X_{c}$$

 $X_{est} = X_{act} + \delta X_{k}$

- C. Compute the commanded velocity increment, Δv_c , based on
- the estimated state, X_{est} , and the desired γ and λ . D. Sample the execution errors, generate the resulting error in velocity increment, Δv . Compute the post-deflection probe state as

$$Y_{act} = X_{act} + \begin{bmatrix} -\Delta v_c & 0 \\ -\Delta v_c & +\delta \overline{\Delta} v \end{bmatrix}$$

$$Y_{est} = Y_{act} + \delta X_k + u$$

- E. Compute the desired orientation of the probe at entry, \underline{u}_{α} , using Y_{est} . Generate a sample orientation error and compute the corresponding actual probe orientation, \underline{u}_{Δ} .
- F. Propagate the actual probe and spacecraft to probe entry using conic formula. Store the dispersions in critical mission parameters at each timepoint.

III. STATISTICAL ANALYSIS OF DISPERSION DATA

Using the dispersion data generated for each sample case, compute the mean and standard deviation for each critical mission parameter for each selected timepoint.

Figure I-2 Computational Flow Chart of Monte Carlo Analysis Program

T defines a transformation from the original Cartesian coordinate system to a new system in which the covariance matrix is uncorrelated, thereby allowing the individual components to be sampled independently. A vector random variable from a distribution of mean zero and covariance, D, is given by

$$Z = (e_1 d_1, e_2 d_2, ..., e_6 d_6)^T$$

where each $\mathbf{e}_{\mathbf{i}}$ is a scalar random variable sampled from a normal distribution of mean zero and standard deviation unity. The $\mathbf{e}_{\mathbf{i}}$ are computed from the formula

$$e_i = \sqrt{-2 \ln \alpha_i} \cos (2\pi \beta_i)$$

where α_i and β_i are random numbers generated from a uniform distribution over the interval (0, 1). The correlated deviation vector in the original Cartesian coordinate system may now be computed using the transformation matrix, T, as

$$\delta X = T \delta Z$$

Therefore, for each sample case, the knowledge and control covariances may be sampled as above to produce knowledge and control state deviation vectors, δX_k and δX_c . The "actual" spacecraft state for the sample is given by

$$X_{act} = X_{nom} + \delta X_{c}$$
.

The "estimated" state of the spacecraft at deflection is given by

$$X_{est} = X_{act} + \delta X_{k}$$
.

Furthermore, at the end of a large number of samples (N \geq 100), the ensemble of deviations, δX_c and δX_k , should obey the empirical formulas

$$E \left(\delta X_{c} \ \delta X_{c}^{T}\right) \rightarrow P_{c} \text{ as } N \rightarrow \infty$$

$$E \left(\delta X_{k} \ \delta X_{k}^{T}\right) \rightarrow P_{k} \text{ as } N \rightarrow \infty.$$

These approximations are checked at the end of the sampling process to ensure that a statistically consistent set of data has been generated.

Having obtained the estimated state of the spacecraft for a sample, the next task is to determine the commanded velocity increment, $\Delta v_{_{\rm C}}$, to be added to the probe at deflection. The vector, $\Delta v_{_{\rm C}}$, is computed as a function of the estimated spacecraft state at deflection, the desired probe flight path angle at entry, $\gamma_{_{\rm C}}$, and the desired lead angle, $\lambda_{_{\rm C}}$. The lead angle is the angle between the radius vector to the probe at entry and the radius vector to the spacecraft at the time of entry. The lead angle is negative when the probe leads the spacecraft. The deflection velocity is determined by iterating on the value of $\Delta\theta$, the true anomaly increment of the probe in going from deflection to entry. The true anomaly of the probe at entry, $f_{_{\rm DE}}$, can be expressed as:

$$f_{PE} = f \gamma_c, R_{EJ}, \Delta\theta, R_A$$

where R_{EJ} is the radius of the bus at deflection and R_A is the radius of the atmosphere. f_{PE} , R_{EJ} , $\Delta\theta$, R_A are used to compute the time of flight, T, from deflection to probe entry using the universal form of Kepler's equation as presented in Reference 1. The spacecraft state is then propagated forward for time T, again using the universal form of Kepler's equation, and the angle, λ , is computed from the state of the spacecraft and the state of the probe at time T. The angle, λ , is compared with the desired λ_C and the $\Delta\theta$ which causes λ to be within 0.01 degrees of λ_C , is found. Since the orbital elements of the probe are known, the required deflection velocity vector may be calculated. The commanded deflection velocity is in the spacecraft plane of motion.

The deviations in the implemented deflection velocity from the commanded are generated using the model described in subsection A2. This model assumes the implementation error is given by three sources: proportionality error, K; resolution error, S; and pointing angle errors, α , β . These errors are assumed uncorrelated and normally distributed. The standard deviation of each error σ_K , σ_S , σ_α , σ_β is input to the program. The error used in each Monte Carlo sample is generated by

K, S,
$$\alpha$$
, β = $e_1 \sigma_K$, $e_2 \sigma_S$, $e_3 \sigma_{\alpha}$, $e_4 \sigma_{\beta}$

where each e_i is a scalar random variable sampled from a normal distribution of mean zero and standard deviation unity. The execution error, $\delta\Delta v$, is then the sum of these errors.

The actual state of the probe at deflection is then the actual position vector of the probe and the sum of velocity of the spacecraft and the actual deflection, Δv , given to the probe.

$$Y_{act} = X_{act} + \begin{bmatrix} - & 0 & - \\ \Delta v_c & + & \delta \Delta v \end{bmatrix}$$

Now that the actual states of the probe and spacecraft are known, the time histories of these two point masses may be computed using conic models.

The attitude of the probe is a crucial parameter, however, as this determines such mission critical parameters as angle of attack at entry and probe aspect angle. Using the nominal trajectory, the desired probe attitude is computed, \underline{u}_{α} . A pointing error

caused by imperfections in the attitude control system is computed in a similar statistical fashion as described above. Once the "actual" probe axis is computed, it is assumed to hold that orientation throughout the mission. No errors are added to the spacecraft axis since it is assumed that the spacecraft can hold the Earth lock with essentially no error.

For each sample probe and space trajectory and probe attitude, the critical entry and communication parameters may be computed as functions of time. The resulting collection of data must then be analyzed by the techniques described in the next subsection.

3. Statistical Analysis of Dispersion Data

The empirical computation of the standard deviations of scalar parameters such as entry angle, lead angle, or lead time may be computed in the following way. Let α_i be the value of any such parameter for the i^{th} case. Suppose that there are N samples to be analyzed. Then the mean and standard deviation of the distribution of α are given by

$$\frac{1}{\alpha} = \frac{1}{N} \sum_{i=1}^{N} \alpha_{i}$$

$$\sigma_{\alpha}^{2} = \left[\sum_{i=1}^{N} \frac{\alpha_{i}^{2}}{N} \right] - \frac{\alpha^{2}}{N}$$

These formulas must be extended for vector quantities. The probe entry site dispersions are given in terms of the two vectors of latitude and longitude (LAT, LON). The spacecraft-probe look direction is conveniently described in terms of the two vectors of cone angle and clock angle (CA, CLA) referenced to Earth and Canopus. Equivalently, these dispersions may be defined in terms of cone angle and cross-cone angle (CA, CCA).

Let Z_i represent the vector describing the actual values achieved for a vector quantity on the ith sample. Then, the vector of mean values and the covariance matrix describing uncertainties and correlations of the vector are given by the formulas

$$\overline{Z} = \frac{1}{N} \sum_{i=1}^{N} Z_{i}$$

$$P_{z} = E(ZZ^{T}) - E(Z)E(Z)^{T}$$

$$= \frac{1}{N} \left[\sum_{i=1}^{N} zz^{T} \right] - \frac{\overline{z}}{\overline{N}} \overline{z}^{T}$$

These formulas are used to compute the covariance matrices of the critical mission vector quantities as well as to reconstruct the original knowledge and control covariances from the deviation vectors generated.

For the entry stie dispersions (LON, LAT) and the spacecraft-probe look directions (CA, CLA) or (CA, CCA), the 2×2 covariances are further analyzed. Let any such covariance matrix be denoted P. Then since P is positive definite it may be diagonalized to produce

$$P = TDT^{T} = T \begin{bmatrix} \lambda_{A} & O \\ O & \lambda_{B} \end{bmatrix} T^{T}$$

Where λ_A and λ_B are the (positive) eigenvalues of the covariance matrix P, and T is the orthonormal matrix of the eigenvectors of P. Let

$$T = \begin{bmatrix} t_{\underline{A}} \\ -t_{\overline{B}} \end{bmatrix}$$

Then t_A is the unit eigenvector associated with the eigenvalue, λ_A . Then the angle between the vector, t_A , and the u_x unit vector (longitude direction for (LON, LAT), cone angle direction for (CA, CLA) or (CA, CCA) is defined by

$$\theta = \cos^{-1} (t_A.u_x) 0 \le \theta \le \pi$$

The uncertainty ellipse may now be easily constructed: $\lambda_{\mbox{$A$}}$ represents one semiaxis; $\lambda_{\mbox{$R$}}$ the other.

Figure I-3 Two-Dimensional Uncertainty Ellipse

Procedures for Alternative Deflection Modes

The procedure for Mode 1/Deflect Probe has been described in detail. A comparison of the procedures for the Mode 2/Shared Deflection and Mode 3/Deflect Spacecraft is provided in Figure IV-3 of Volume II of this report.

For each sample in each mode, the initial task is to determine the control and knowledge deviations, δX_c and δX_k , by sampling the control and knowledge covariances. The actual state of the spacecraft is then defined by $X_{act} = X_{nom} + \delta X_c$; the estimated state of the spacecraft is $X_{est} = X_{act} + \delta X_k$, where X_{nom} is the nominal spacecraft deflection state.

In Mode 1/Deflect Probe the estimated state, $X_{\rm est}$, is used to determine the commanded probe deflection, Δv . This velocity increment is then degraded by an execution error, $\delta \Delta v$, determined by sampling from possible execution errors. The probe axis orientation throughout the mission is computed as the nominal orientation corrupted by an orientation pointing error, δ . The deflection states for the probe and spacecraft are then propagated to a series of time points at which the sample deviations are recorded. These dispersions are then analyzed to yield mean and standard deviation values.

In the study of the Mode 1/Deflect Probe deflection scheme, it was discovered that the knowledge and control uncertainties did not significantly affect the critical mission parameters. Therefore, to simplify the Mode 2/Shared Deflection analysis, it was assumed that the knowledge and control uncertainties were zero so that the spacecraft correction, Δv , could be precomputed and simply read in. At probe deflection, the probe is commanded to be aligned in the direction of both the Δv and zero angle of attack orientation. Because of the in-plane and out-of-plane pointing errors, the correct direction is not achieved. The incorrect orientation is then used for both the Δv addition and the probe longitudinal axis. Following the probe deflection, the spacecraft correction is implemented with the execution error model described in subsection A2. The resulting sample deviations are then collected and analyzed to determine the mean and standard deviations.

For Mode 3/Deflect Spacecraft deflection analysis, the knowledge and control uncertainties are again considered. The probe is oriented at release using the input orientation pointing error, δ , and keeps that attitude throughout the mission. The estimated state of the spacecraft, X_{est} , is used to compute the deflection,

 Δv . Spacecraft execution errors are then sampled to determine the error, $\delta \Delta v$. The erroneous velocity increment is then added to the spacecraft and the spacecraft is then propagated to the selected time points. The critical mission parameter deviations are then recorded and analyzed to determine the important statistical data.

C. REFERENCE

 R. H. Batten: Astronautical Guidance, McGraw-Hill Book Company, New York, N.Y., 1964

APPENDIX J

MULTILAYER INSULATION CONDUCTIVITY EVALUATION

C. Webb

June 15, 1972

To evaluate insulation performance accurately, two applicable data sources on multilayer insulation were obtained. The first source represented laboratory guarded hot plate test data (Ref 1), the second source represented thermal conductivity test data from an actual hardware mockup where fiberglass standoffs penetrated the insulation blanket and seams and joints were present (Ref 2). Figure J-1 presents a comparison between these two sets of data. In addition, an analytical curve fit is shown for each set where the expression representing the thermal conductivity considered both the linear conduction and the radiation associated with multilayer insulation. The expression, therefore, includes the influence of the mean insulation temperature and, in addition, the nonlinear influence of the actual boundary temperatures. The expression used for the multilayer insulation follows:

$$k = aT_M + b(T_H^2 + T_C^2)(T_H + T_C)$$
 [J-1]

where,

k = effective thermal conductivity

a & b = influence coefficients

 T_{M} = insulation mean temperature

T_H = hot boundary temperature

T_C = cold boundary temperature

and

$$Q_{leak} = \frac{kA}{t} \left(T_{H} - T_{C} \right)$$
 [J-2]

where

Q_{leak} = Blanket heat leak

A = insulation surface area

t = insulation thickness.

The importance of this expression is that it more precisely determines the thermal conductivity as a function of boundary temperature and thus insulation thickness variations.

For outer planet entry probe system thermal analyses, the Skylab conductivity data was selected to determine the baseline influence coefficients of Equation [J-1] and thus the multilayer insulation performance.

Figure J-1 Multilayer Insulation Thermal Conductivity

REFERENCES:

- 1. E. Fried and G. Karp, et al.: Measurement of Thermal Conductance of Multilayer and Other Insulation Materials. Final Report Contract NAS9-3685, General Electric Co., Valley Forge Space Technology Center, Philadelphia, Pa, 29 September 1967.
- 2. D.K. Ong: Technical Summary Report MDA Thermal Component Wall Test, Skylab Program Payload Integration Contract NAS8-24000, Martin Marietta Corporation, Denver, Colo.

APPENDIX K

 $^{\mathrm{NH}}_{\mathrm{3}}$ AND $^{\mathrm{H}}_{\mathrm{2}}\mathrm{0}$ CLOUD MODELS FOR THE OUTER PLANETS

W. S. Cook

May 1, 1972

Report No. D-72-48740-005

NH₃ - H₂O CLOUD MODELS

FOR

THE OUTER PLANETS

Report Date: May 1972

This Report is issued under

Task Authorization 48740

Distribution:

Author

W. F. Butler

A. R. Barger

R. R. Falce

P. C. Carney

K. W. Ledbetter

M. W. Kuethe

J. W. Hungate

R. S. Wiltshire

R. J. Richardson

J. H. Romig

E. G. Howard

R. L. Hulstrom

L. G. Wolfert

J. F. Vandrey

H. D. Greyber

Technical Library

Dept. File

Task Audit Center File

Author W. S. Cook

Cognizant Engineer U.W

Section Head

Department Head

& Technology

Panel Chairman

Program Manager IRAD

FOREWORD

This report was prepared by the Denver Division of the Martin Marietta Corporation, Systems Analysis Department.

The Task Authorization was 48740.

ABSTRACT

Ammonia and water cloud structures are calculated for the outer planets. This report presents the theory, the computational procedures, and the results. The results are based on the atmospheric models provided in References 3, 4, and 5.

TABLE OF CONTENTS

	r	age
	FOREWORD	i
	ABSTRACT	ii
	TABLE OF CONTENTS	ii
I.	INTRODUCTION	1
II.	THEORY	2
III.	COMPUTATIONAL PROCEDURES	8
IV.	RESULTS	13
ν.	REFERENCES	24

I. INTRODUCTION

Radio attenuation in the atmospheres of the outer planets is dependent upon cloud structures. John Lewis (Ref. 1) has published the theory necessary for predicting ammonia-water clouds; and with the help of the empirical formulas provided by C. Haundenschild (Ref. 2) the cloud structures for the outer planets were predicted.

From the first law of thermodynamics, conservation of energy for a molar parcel of atmosphere undergoing an adiabatic expansion, gives

$$\overline{C}_{v} dT + Pdv + \sum_{i} \lambda_{i} dX_{i} = 0$$
 Eq. 1

where \overline{C}_V is the mean molar specific heat at constant volum e, dT is a differential change in the absolute temperature, P is the total pressure, dv is the differential change in the molar volume, λ_1 is the molar heat of condensation of the ith gas component, and d χ_1 is the differential change in the number of moles of condensible gas present in the atmosphere. The equation of state of the bulk gas is

$$Pv = RT$$
 Eq. 2

where R is the universal gas constant thus

$$Pdv = RdT - vdP Eq. 3$$

substituting Eq. 3 into Eq. 1

$$\overline{C}pdT - vdp + \sum_{i} \lambda_{i} dX_{i} = 0$$
Eq. 4

where $\overline{C}p = \overline{C}_v + R$.

The variation of the vapor pressure of any condensate j with temperature is given by the Clausius-Clapeyron equation for evaporation or sub-limation

$$\mathbf{d}_{\mathbf{p}_{\mathbf{j}}} = \frac{\lambda_{\mathbf{j}} P_{\mathbf{j}}}{RT^{2}} dT$$
 Eq. 5

The equation of state for the jth the component of the condensable gas is

$$P_{j}V = X_{i}RT$$
 Eq. 6

Equation 5 is for the case where the molar volume of the solid or liquid is neglected with respect to the molar volume of a gas; therefore, from equation 5 and 6 holding the molar volume constant

$$dp_j = \frac{\lambda_j P_j}{RT^2} dT = \frac{\chi_j RdT}{V} + \frac{RT}{V} dx_j$$
 Eq. 7

and solving for $d\chi_1$

$$dx_{j} = x_{j} \left(\frac{\lambda_{j}}{RT^{2}} - \frac{1}{T} \right) dT$$
 Eq. 8

The equation for hydrostatic equilibrium is

$$dp = - \overline{g} \frac{GP}{RT} dZ$$
 Eq. 9

where $\overline{\mu}$ is the molecular weight, G is the gravitational acceleration, and dZ is a vertical height increment.

Substituting Eq's 8 and 9 into Eq. 4 for the case in which only a single condensate is condensing

$$\overline{C}_{p} dT + \overline{\mu}G dZ + \left[\lambda_{j} \chi_{j} \left(\frac{\lambda_{j}}{RT^{2}} - \frac{1}{T}\right)\right] dT = 0$$
 Eq. 10

thus the wet adiabatic temperature lapse rate is

$$\frac{\partial T}{\partial Z} = -\frac{\overline{\mu}G}{Cp + \lambda_j \chi_j \left[\frac{\lambda_{j,i}}{RT^2} - \frac{1}{T}\right]}$$
 Eq. 11

We now need to modify Eq. 11 for a system of two condensates, water and ammonia. Let us imagine an isothermal process in which dX_B moles of solution with constant molar ammonia concentration are evaporated. Then

$$dx_{\underline{A}} = cdx_{\underline{B}}$$
 Eq. 12

where $d\chi_A$ is the change in the number of moles of ammonia in solution, and C is the molar concentration of ammonia present in solution, then $d\chi_U = (1 - C) d\chi_R$ Eq. 13

where $d\chi_W$ is the change in the number of moles of water in solution. Using Eq. 6 for the isothermal case

$$dP_W = RT dx_W = (1 - C) dP_B$$
 Eq. 14

From equation 5 considering only the condensation of H2O

$$dP_{W} = P_{W} \frac{\lambda_{W}}{PT^{2}} dT$$
 Eq. 15

Since actually we are evaporating water plus ammonia, the latent heat for the bulk solution should be employed;

$$\lambda_{\rm B} = C\lambda_{\rm A} + (1 - C) \lambda_{\rm W}$$
 Eq. 16

and equation 15 can be rewritten for the bulk solution

$$dP_B = \frac{P_W}{(1-C)} \frac{\lambda_B}{RT^2} dT$$
 Eq. 17

From Eq. 6 we proceed as in Eq. 7

$$\frac{P_W}{(1-C)} \frac{\lambda_B}{RT^2} dT = \frac{X_R RdT}{V} + \frac{RT}{V} dX_B$$
 Eq. 18

thus

$$d\chi_B = \chi_W \left(\frac{\lambda_B}{(1-C) RT^2} - \frac{\chi_B}{\chi_W T} \right) dT$$
 Eq. 19

We then combine Eq.'s 9 and 19 to get

$$\overline{C}_{P} dT + \overline{\mu}GdZ + \lambda_{B} \chi_{W} \left[\frac{\lambda_{B}}{(1-C) RT^{2}} \frac{\chi_{B}}{\chi_{W}T} \right] dT=0$$
 Eq. 20

The wet adiabatic lapse rate for an ammonia-water systems

$$\frac{\partial \mathbf{T}}{\partial \mathbf{Z}} = \frac{-\overline{\mu} \mathbf{G}}{\overline{\mathbf{C}}\mathbf{p} + \lambda_{\mathbf{B}} \mathbf{X}_{\mathbf{W}} \left[\frac{\lambda_{\mathbf{B}}}{(1-\mathbf{C})\mathbf{R}\mathbf{T}^2} - \frac{\mathbf{x}_{\mathbf{B}}}{\mathbf{X}_{\mathbf{W}}\mathbf{T}} \right]}$$
 Eq. 21

Equation 21 was derived under the assumption that water was the prime condensate and some ammonia was condensing out at the same time. For the region of Jupiter's atmosphere where ammonia clouds are forming then ammonia is the prime condensate. Equation 11 must then be modified in a similar way as was done when water was the prime condensate; the resulting lapse rate is

$$\frac{\partial T}{\partial Z} = \frac{-\frac{1}{\mu} G}{\overline{C}p + \lambda_B \chi_A \left[\frac{\lambda_B}{C RT^2} - \frac{\chi_B}{\chi_A T}\right]}$$
Eq. 22

C. Haudenschild (Ref. 2) has formulated empirical analytic equations for predicting the partial pressures of ammonia and water for the various phases. These equations are presented in Table I and the phase boundaries are graphically presented in Figure 1.

TABLE I. ANALYTIC EXPRESSIONS FOR THE \mbox{HH}_3 - \mbox{H}_2 0 SYSTEM

or pressure	or pressure .0	Eq. 1 Eq. 3 Eq. 4 Eq. 5 Eq. 5
<u>DEFINITION</u> H ₂ 0 partial vapor pressure	NH3 partial vapor pressure logarithm base 10	78.192C ² F 878.192 (C ² -2C)
UNITS	Torr	L85/I 28/T 106.2 + 87 2149.65 +
SYMBOL P2	P ₃ 10g	$7 - 2051.1$ $0 - 2219.2$ $.743c^{2} \left[\frac{24}{24} \right]$ $(c^{2} - 2c) - \left[\frac{24}{2} \right]$
DEFINITION Temperature	Molar Concentration of WH3 in solution.	Equation $log P_2 = 10.447 - 267.01/T$ $log P_3 = 10.312 - 1691.77/T$ $2/3 log P_3 + 1/3 log P_2 = 9.777 - 2051.185/T$ $1/2 log P_3 + 1/2 log P_2 = 9.790 - 2219.28/T$ $log P_2 = log (1-C) + 9.488 $
UNI TS K ^O	0.0 <c<1.0< td=""><td>50</td></c<1.0<>	50
SYMBOL	ပ	Région Solid H20 Solid NH3 (NH3) 2 H20 NH3 H20

concentration lines are curves of constant temperature. The dashed lines are cloud composition tracks Figure 1. Phase diagram of the NH₃ - H₂0 system. The scalloped line running from far left to bottom right is the freezing point line of aqueons NH₃ solutions. The family of diagonal straight lines are lines of constant ammonia concentration in solution. The family of curves intersecting the constant for the different model atmospheres.

III. COMPUTATIONAL PROCEDURES

Given the formulas found in Table I and Eqs. 9, 21, and 22, along with the parameters presented in Table II and Figures 2 and 3, the cloud structures for the outer planets were determined. The computational procedure is as follows:

- Specify a reference pressure and temperature deep within the troposphere, below the water-ammonia clouds. The reference pressures and temperatures were provided by NASA (Ref.'s 3, 4, and 5) and are included in Table II.
- 2) Beginning with the reference pressure and temperature, the temperature and pressure are calculated in one Km altitude increments in the positive altitude direction; and after each increment a check is made to see if condensation has occurred. At the base of the lowest-lying solution clouds, the vapor pressures of NH3 and H20 are in the same ratio to each other as the NH3/H20 abundance ratio in the lower dry atmosphere. The ammonia concentration in solution at the cloud base can be determined from equations 5 and 6 in Table I. With the know-ledge of the ammonia concentration P2 is calculated and compared with the partial pressure of H20 in the atmosphere. If the partial pressure of H20 is greater than or equal to P2 then condensation will occur. At the cloud base there is a possibility that the condensate freezes; therefore a check for freezing has to be made. Freezing occurs when $\overline{P}_2 < P_2$ where \overline{P}_2 is P_2 of Eq. 1 in Table I.
- 3) The incremental changes in the temperature and pressure are calculated in the following manner; where J corresponds to the previous altitude and I corresponds to the present altitude:
 - a) below the level of condensation

$$T_{I} = T_{J} - \frac{\mu G \times 10^{5}}{Cp_{I}}$$
 Eq. 23

TABLE II. PARAMETERS USED IN NASA'S MODEL ATMOSPHERES FOR JUPITER, SATURN, URANUS, AND NEPTUNE (Ref's 1, 3, 4)

PARAMETER		JUPITER 'COOL' MODEL	JUPITER NOMINAL MODEL	SATURN NOMINAL MODEL	URANUS NOMINAL MODEL	NEPTUNE NOMINAL MODEL
	H ₂	0.68454	0.86578	0.88572	0.88572	0.88572
Composition	He	0.31057	0.13214	0.11213	0.11000	0.11000
(Molar fraction)	CH ₄	0.00145	0.00062	0.00063	0.03000	0.03000
	NH ₃	0.00035	0.00015	0.00015	0.00015	0.00015
	H ₂ 0	0.00240	0.00102	0.00105	0.00100	0.00100
	Ne	0.00031	0.00013	0.00013	0.00013	0.00013
0	thers	0.00038	0.00016	0.00019	0.00019	0.00019
μ̈(grams/mole)	2.70	2.30	2.27	2.68	2.68
G (cm/sec ²)		2700	2500	1050	810	1100
Reference Temperature		405.3	398.169	292.173	351	378
Reference		403.3	398.109	292,1/3	331	376
	(MTA)	100.77	10.906	8.366	9.0	27.7
Reference Altitude () Zero altitu is a ome at phere.		-133	-52	-156	-331	-282
<u> </u>		1	1		1	1

Figure 2. Specific Heat, for Hydrogen. The specific heat for He is 4.98 cal/mole and the specific heat for the Jupiter 'cool' atmosphere is 8.94 cal/mole.

 $Cp = 6.75 \times 10^{-4}T + 6.641$

T>473

Figure 3. Latent Heat Release of Condensation for Water and Ammonia

cgs units are used and 10^5 is the altitude increment in centimeters.

$$P_{I} = P_{J} EXP \left[\frac{-\mu G \times 10^{5}}{RT} \right]$$
 Eq. 24

where $\overline{T} = 1/2 (T_T + T_J)$

b) after condensation has occurred but welow the ammonia clouds:

$$T_{I} = T_{J} - \frac{\mu G \times 10^{5}}{C p_{J} + \lambda_{BJ} \left[\frac{\lambda_{BJ} \times WJ}{(1 - C_{J}) RT_{J}^{2}} - \frac{x_{BJ}}{T} \right]}$$
 Eq. 25

where $\chi_B = \chi_W + \chi_A$

c) for the ammonia clouds

$$T_{I} = T_{J} - \frac{\mu G \times 10^{5}}{C_{p_{J}} + \lambda_{BJ} \left[\frac{\lambda_{BJ} \times_{AJ}}{C_{J} RT_{J}^{2}} - \frac{\chi_{BJ}}{T}\right]}$$
Eq. 26

- 4) Calculate ammonia concentration in solution.
 - a) for region where water is the prime condensate $\chi_{\mbox{\bf A}}$ is almost constant, thus

$$P_{AI} = \chi_{A,T} P_{T}$$
 Eq. 27

where P_{AI} is the partial pressure of ammonia. Then the ammonia concentration is calculated with the use of Equation 6, Table I where $P_3 = P_{AI}$.

b) for the region where ammonia is the prime condensate $\chi_{\mbox{\scriptsize W}}$ is almost constant, thus

$$P_{WI} = \chi_{WI} P_{I}$$
 Eq. 28

The ammonia concentration in solution is calculated with the use of Eq. 5 - Table I where $P_2 = P_{WI}$.

Calculate water and ammonia vapor pressures in solution and check for freezing. The vapor pressure of water is calculated from Eq. 5 - Table I. Now calculate the concentration of water in the atmosphere by $\chi_W = P_2/P$. Now, a better calculation of the vapor pressure of ammonia can be calculated with the use of Equation 19.

$$P_{A} = \chi_{A}P = P \left[\frac{\lambda_{B} \chi_{W}C}{(1-C)RT^{2}} - \frac{\chi_{B}}{T} \right]$$
 Eq. 29

Theoretically if the above partial pressures are greater than the partial pressures predicted by Eq's 1, 2, 3, or 4 in Table I, then the system is in one of the frozen states. As it turns out the equations in Table I do not give accurate enough predictions to predict the phases in the above manner; therefore, the phases were determined by checking to see if the coordinates defined by χ_WP and χ_AP are within the scalloped curves as illustrated in Figure 1. When the H₂O - NH₃ system is within one of the solid phases, χ_W and χ_A are determined by the appropriate equations in Table I.

6) The cloud density, D, was determined in the following manner:

$$D = \left[\frac{(XAJ - XAI) + (XWJ - XWI)}{Gd} \right] \overline{P}$$
 Eq. 30

where d is the altitude increment and $\overline{P} = 1/2(P_I + P_J)$.

IV. Results

Pertinent results specifying the cloud structures are presented in Tables III through VII. The altitude values found in the tables correspond with a particular cloud base which also coincides with the maximum cloud density. The prominent clouds are illustrated in Figures 4 through 8.

mp.	
s. C	
Atmo	

 $NH_3 - 0.01\%$

 $H_20 - 0.10\%$

PHASE	Solid H ₂ 0	Solid (NH $_3$) H $_2$ 0	Solid $(NH_3)_2$ H_20	Solid NH3
CLOUD DENSITY (gm/liter)	1.2x10-3	5.0x10-8	1.6x10 ⁻⁹	6.5x10-5
TEMP (OK)	260.4	171.4	160.0	144.2
PRESSURE (dynes/cm ²)	2.65x106	6.90x10 ⁵	5.61x10 ⁵	4.09×10 ⁵
ALT (1)	-30	12	17	24

(1) Zero altitude at one atmosphere.

TABLE IV. JUPITER 'COOL'CLOUD MODEL

Atmos. Comp.	• dwo			
H ₂ - 68.49%	267	Ref. Temp - 405 (OK)	0	Gravitational Accel - $2700 \text{ (cm/sec}^2\text{)}$
Не - 31.10%	10%	Ref. Pres - $1.02 \times 10^8 (\mathrm{dynes/cm}^2)$	8 (dynes/cm ²)	Molecular Weight - 2.7 (gm/mole)
CH4 - 0.14%	14%	Ref. Alt133 (Km)	3	Specific heat - 8.94 (cal/mole)
$NH_3 - 0.03$ %	03%			
$H_20 - 0.24$ %	24%			
Alt (1) (Km)	PRESSURE $(dynes/cm^2)$	темр (^O K.)	CLOUD DENSITY (gm/liter)	PHASE
-83	2.99x10 ⁷	308.7	2.2x10 ⁻²	(0.8 - 2.7)% Solution (2)
-63	1.65x10 ⁷	272.6	3.1x10-3	Solid H ₂ 0
-26	4.26x10 ⁶	201.6	4.9×10-6	(29.1 - 39.8)% Solution (2)
-16	2.72x10 ⁶	182.2	2.3x10 ⁻⁷	Solid (NH ₃)H ₂ 0
-11	2,13x10 ⁶	172.5	1.2x10 ⁻⁸	Solid $(\mathrm{NH}_3)_2$ H_20
1 2	1.33x10 ⁶	155.3	3.1x 10 ⁻⁴	Solid NH ₃

(1) Zero altitude at one atmosphere.

⁽²⁾ Percentage of ammonia in solution.

 $NH_3 - 0.01$ %

 $H_20 - 0.11$ %

H ₂ - 88.59%	Ref. Temp - 292 ^O K	Gravitational Accel - $1050 \text{ (cm/sec}^2\text{)}$
Не - 11.23%	Ref. Pres - 8.48×10^{0} (dynes/cm ²)	Ref. Pres - 8.48x 10° (dynes/cm ²) Molecular Weight - 2.27 (gm/mole)
сн4 - 0.06%	Ref. Alt156 (Km)	

PHASE	Solid H ₂ 0	(33.4 - 36.4)% Solution (2)	Solid (NH_3) $\mathrm{H}_2\mathrm{O}$	Solid $(\mathrm{NH}_3)_2~\mathrm{H}_20$	Solid NH.
CLOUD DENSITY (gm/liter)	3.0×10-3	2.5×10 ⁻⁷	1.2x10 ⁻⁷	4.2x10 ⁻⁹	1.7×10^{-4}
TEMP (K°)	273.7	181.5	176.0	165.8	149.9
PRESSURE (dynes/cm ²)	6.79×10 ⁶	1.78x10 ⁶	1.62 x10 ⁶	1.35x10 ⁶	9.95×10 ⁵
ALT (L) (Km)	-134	- 27	- 21	- 10	7

(1) Zero altitude at one atmosphere.

⁽²⁾ Percentage of ammonia in solution.

H ₂ - 85.87%	Ref. Temp - 351 (Ko)	Gravitational Accel - 810 (cm/sec^2)
He - 11.02%	Ref. Pres - 9.29×10^7 (dynes/cm ²)	Molecular Weight - 2.68 (gm/mole)
CH4 - 3.00%	Ref. Alt331 (Km)	
$NH_3 - 0.01$		
н ₂ 0 - 0.10		

Alt(1) (Km)	PRESSURE $(dynes/cm^2)$	TEMP (Kº)	CLOUD DENSITY (gm/liter)	PHASE
-274	5.93x10 ⁷	306.1	2.8×10-2	(0.9 - 2.9) x Solution (2)
-231	4.04x107	273.5	4.5x10 ⁻³	Solid H ₂ 0
-154	1.78x10 ⁷	210.8	2.1x10 ⁻⁵	(26.8 - 42.3) % Solution(2)
-127	1.25x10 ⁷	188.0	6.6x10 ⁻⁷	Solid(NH ₃) H ₂ 0
-115	1.06x10 ⁷	177.6	4.3x10 ⁻⁸	Solid $(\mathrm{NH}_3)_2$ H_2 0
86 -	8.17×10 ⁶	162.9	1.4x10 ⁻³	Solid NH ₃

(1) Zero altitude at one atmosphere.

⁽²⁾ Percentage of ammonia in solution.

TABLE VII. NEPTUNE CLOUD MODEL

H ₂ - 85.87% H ₆ - 11.02% CH ₄ - 3.00% NH ₃ - 0.01% H ₂ 0 - 0.10% (Km) (d, (Km) -233 1 -174 8 -146 5 -109 3	7% 0% 1% 0% 0% (dynes/cm²) 1.77x108 8.89x107 5.91x107 3.21x107	Ref. Temp 378 (K°) Ref. Press - 2.87x108 (dynes/cm²) Ref. Alt282 (Km) TEMP CLOUD DE (gm/lite 255.3 2.5x10 ⁻³ 233.3 2.7x10 ⁻⁴ 191.2 7.3x10 ⁻⁷ 184.3 1.3x10 ⁻⁷	NSITY r)	Gravitational Accel - 1100 (cm/sec ²) Molecular Weight - 2.68 (gm/mole) PHASE (0.9 - 7.3)% Solution (2) Solid H ₂ 0 (20.7 - 47.6)% Solution (2) Solid (NH ₃) H ₂ 0 Solid (NH ₃) 2H ₂ 0
68 1	2.17×10 ⁷	167.9	3.1x10 ⁻³	Solid NH3

(1) Zero altitude at one atmosphere.

(2) Percentage of ammonia in solution.

Figure 4. Cloud densities and the wet-adiabatic lapse rate for Jupiter nominal model atmosphere.

Figure 6. Cloud densities and the wet-adiabatic lapse rate for Saturn nominal model atmosphere.

Figure 7. Cloud densities and the wet-adiabatic lapse rate for Uranus nominal model atmosphere.

Cloud densities and the wet-adiabatic lapse rate for Neptune nominal model atmosphere. Figure 8.

V. REFERENCES

- 1) John S. Lewis, "The Clouds of Jupiter and the NH $_3$ -H $_2$ O and NH $_3$ -H $_2$ S.Systems", <u>Icarus</u>, <u>10</u>, 365 (1969).
- 2) C. Haudenschild, "Multi-phase Ammonia Water System", JPL Space Programs Summary 37-64 Vol. III.
- 3) "The Planet Jupiter (1970)", NASA SP-8069 (Dec. 1971).
- 4) "Preliminary Model Atmospheres for the Planets Uranus and Neptune", JPL Section Document 131-17 (Nov. 1971).
- 5) "The Planet Saturn (1970)", NASA Space Vehicle Design Criteria (Environment) Preliminary Information.

APPENDIX L

VERTICAL DESCENT PROGRAM FOR SCIENCE INSTRUMENT SIMULATION (DATAT) DESCENT RUNS FOR JUPITER AND SATURN

K. W. Ledbetter and A. R. Barger

June 8, 1972

P. SFEC 400.000 F SPEC 50.00 r SPEC 0. 40.000 4 SPFC M SPEC 0. 30.000 M SPEC SECONDS AT 71454.000 KP FADIUS 30.000 ACCEL 15.000 ACCEL 0. ACCEL 10.000 30.800 ACCEL 0. BCCEL 30.000 ACCFL 8.000 ACCEL 8. . ACCEL 7.006 30.000 ACCEL 0. SCRAIVABLE JUPITER PROBE TASK & CESCENT RUNS
JOL MCNOGRAPH JUPITER GOOL/CEMSF ATMCSPHEPE
BALLISTIC GOEFFICIENT = .090, INITIAL TIME = SEP 10 BARS 10.000 PRESS 0. PRESS 5.000 TEMP 10.000 AC OF PREMEDUS MEASUREMENTS
TEMP PRESS TEMP
0. 0. 0. CAL. CCEF. 0.65/0.09/1.50 SAPPLE INTERVALS (SECONDS)
TEVF FAFFS
3.000 3.500 4.0 BITS PER SAMPLE VEYF FRESS 10.000 11.000

SPEC 60.000

REQUIREC RIT FATE = 61.7262 ETTS/SECOND

ENTRY DATA IN STERRGE = 6800.9 PITS

F SPEC

SURVIVACLE JUPITER PROBE TASK & GESCENT RUNS JPL MCKGGRAFF JUPITER COOL/CENSE ATMOSPHERE BALLISTIC COEFFICIENT = .090, INITIAL TIME =

SECONDS AT 71454.000 KM RADIUS

•

SFP 18 BARS

EAL. CCEF. C.65/0.09/1.50

PAGIUS 71454;00 TIME 0,	T TIEC	VEL OCITY	40.44 40.44 40.44 40.44	-987 KFT -878 METER/S 2485 ME/SEC -912 FT/SEC		DVR P DCPPLER FACH NO	# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATP BARS E+03 CPS		-265.276	70 FARENE	HE 17
NESTACHENT CONTRACTOR THE STACE OF THE STACE	1600 - 46571 2-0420 - 06378 264,4353 0. R	PRESS 1000 107537 107537 226.2841 0. 256.2841	14	15.20 292	1110 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACCEL 1600 1628489 67783 60763477 66 59482	1	ACCEL 2 35674 2 0 14243 3 0 14966 3 0 14966 5 0 1 0 1 0 1 0 1	M SWEC 4.50472 0.2218 0.4120 0. 2.226 0. 2.236 0. 2.236 0. 2.236 0. 2.236	3. SPEC 5. 04404 0. 17111 0. 05560 17. 6673 0. 10944	7 - 11163 1 - 11163 - 1466 0 - 17284 1 3 - 7287 1 - 7 33 6	2
7 ACTUS 7 14 51 . COO TIME 19 . 349 . 32249	2000 - 100 CEC -	ALTITUBE VELOCITY	14.5	KFT KFT BETER FT/SE	9	DVM P COPPLER	.117475 BA .117475 BA .002615 BA 1.0584806+0	BARS BATE BARS E+ON CPS	TEMPERATURE	RE 106500	OC KELWIN	
INSTRUCTOR VERNING OF	7.45 .4312 2.3012 2.3042 .90427 234.3778 6.39535	5.53 5.53 1.9773 1.9773 2.00.500 0.8 24.37520	175.05514 175.00571 175.2657 0 R	PPESS 4.87 1.31934 1.39.80515 1.39.8056 0.17.13697	# # # # # # # # # # # # # # # # # # #	ACCEL 15 14 14 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACCEL 2.29 2.4767 45.2799 0.8757 5.87574	M SPEC 1.54 6.03132 .2481 .04605 21.7159 0.8 3.05776	1 SPEC 1 1 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 SPEC 6 3 13 3 14 3 3 15 3 3 1 2 3 3 3 1 2 3 3 3 1 3 3 3 3 1 3 3 3 3	7
ACTUS 710	. 000 . 200 . 202 . 202 . 203 . 203	ALTITUE VELOCITY	266. 1296. 1296.	KA KFT MFTER MB/SE FT/SE	SFC	PESSURE DYM P CCPFLER FACH NO		BARS BARS E+D2 CFS	TEMPERATURE	- W	OO KELVIN 70 FAHRENN	HEIT
INSTRUCTOR PERSON OF PERSON OF PERSON	16.73 38478 2.5989 0.00481 207.7079 0. R	08ESS 12.77 2.44833 2.2305 0.09562 177.8040 0.840	11.30 21.30 31.30 1.9542 1.9542 1.95.27 0.0644 1.95.27 0.05.27 0.05.27	10.00014 10.00014 10.00014 10.00001 10.00001		ACCEL 1:01:045 1:01:0	1.000000000000000000000000000000000000	11	3.601637 3.601637 3.601637 19.4068 0.6153	# # # # # # # # # # # # # # # # # # #	7. KPEC 1. 674632 1. 604632 1. 104633 1. 10463	6

SECONDS AT 71454.000 KM RADIUS SLRVIVAPLE JUDITER PROBE TASK ? FFSCENT RUNS JPL PCRNGPAGH JUDITER GOOL/CENSE ATMOSPHERE FALLISTIC GOEFFICIENT = .09C, INITIAL TIME =

.

SEF 10 BARS

F. LL. CCEF. 1.65/0.09/1.50

RACIUS 7144 TIME 6'	71445.000 KM 55.681 VEC 1.09811 MTN .319300 HPS	ALTITUE VFLOCITY	23. 75. 114. 1.7	000 KM 459 KFT 460 METER/SF(987 MA/SEC 526 FT/SEC	£	PESSURE DYN P OCECLEP	.19142 .191142 .003815 .29911E	8468 447 8489 E+02 CFS	T EMP ERAT URI	PE 108.000	OO KELVIN 70 FAHRENME1	YE I T
NO STANCE OF STA	7FMP 22.96 34101 5.925 .06543 164.6490 7.87	996.02 19.62 2.39739 2.5164 15.09535 0.00535 31.01666	TENP 17.47 17.47 2.49764 2.2044 20726 137.7197 0 R	2RESS 14.18 .56576 1.7675 .00910 109.9227 0.0	##CCFL 10041 10044 10064	ACCEL 9-24- 1-1127 011465 6-2316 0. 2316	1. 1100 E E E E E E E E E E E E E E E E E	1	M SPEC 3.21476 .3111 .05772 17.3257 0.83383	M SPEC 4.21656 • 2372 • 07893 12.6566 1.2363 1.24693 2.92535	SPEC 2.1926 3.10193 0.10091 0.10091 3.10091 2.3094 2.3094	A SPEC 6 140640 6 140640 6 140640 6 10313 7 0 19083 7 0 19083
CIUS 71	• 000 • 000	A F	20. 65. 101. 2.0	N KFT 7 KFT 9 METER/ 6 ME/SFC 9 F1/SEC	يو د اد ن		.247050 .243619 .003615 7.3462446	BARS ATM BARS E+02 CPS	TEMPERATU	URE 108.00	CO KELVIN 70 FAHRENN	HE I T
	1640 72.25 3.221 7.3221 7.320613 163.06413 163.06413 16.76393	13.00.0	76MF 24.44 5.40210 5.4870 122.0819 0.0819 0.65011	19.75 19.75 19.36 1.9936 97.4424 0.756075	しらていきゅうかい ー	ACCEL 179850 1.29850 0.01665 60.01665 2.99701 2.59189	4	ACCEL 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	2 SPEC 2 S S S S S S S S S S S S S S S S S S	M SPEC 3.81192 0.2623 0.00707 111.408707 6.34398 6.34398 6.31536	4. SPEC 2.88 2.88 4.70178 9.0178 9.0178 9.0178 9.0178 9.07178	M SPEC 2.56 5.57016 .17451 7.4341 9.75790 .1025 2.30049
ACTUS 7:		ALTIT VELOG	17.0 55.7 91.8 2.74 301.4	00 KM 74 KFT 89 MFTER/S 11 MP/SEC 75 F1/SFC	و <u>د</u> س	RESSURF DYM P CCPFLER FACE NO	13821 05717 03815 624115	BARS ATH BARS F+02 CFS	A A	URE 112.7 -256.6	767 KELVIN 690 FAHRENNE	HE I T
TAN TRUCTOR	46.9910	26.57 36.57 36.1244 36.1244 126.8712 65222 16.31280	75 HD 32 - 21 - 22 - 21 - 22 - 21 - 22 - 21 - 22 - 22 - 22 - 22 - 22 - 22 - 22 - 21 - 25 - 21 -	08ESS 25.97 2.1916 3.1126 88.6263 1.1276	10.864 10.869 10.5697 10.5697 10.5697 10.5697 10.73784 10.73784	ACCEL 16.61 15.72711 2.3753 2.3753 65.1643 1.41264 1.7.80683	ACCEL 136-64 10-10-10-10-10-10-10-10-10-10-10-10-10-1	ACCEL 1.35032 0.37030 0.34030 2.624455 2.624459 0.8812	2 SPEC 5 65014 0 3373 14 0300 14 0300 14 6516 5 146516 4 95511	3 .40063 3 .40063 0 .2865 10 .6459 6 .7 .847 3 .79577	4.31211 4.31211 1.550 1.1977 6.3492 6.37851 7.05327	M SPEC 3.006 5.11704 11704 0.14556 6.0699 9.93400 2.62423

SUBVIVABLE JURITER PROBE TASK 3 CFSCENT RUNS
JAL MCNOSPARE JUPITER COOL/FENSE ATMOSPHERE
RALLISTIC CORFETTIENT = .090, INITIAL TIME =

.

SEP 18 BARS

EAL. CCFF. C.65/0.09/1.5P

SECONDS AT 71454, COD KM FADIUS

RGCFL AGGEL 6.094493 *RRYRE 66650 83417 18727 1.5004 1.2031 18727 2.00575 40.2496 18389 15.29412 1.61386 *RRYRE 66650 83417 *RRYRE 6650 84123 *RCCFL AGGEL 6650 *RRYRE 6650 86516 *RRYRE 6650 87136 *RRYRE 6650 8713	957 FT / FT	22.4 46.43 2.9315 3.04512 3.04513 3.04513 3.04513 4.0756 4.05921 4.7566 4.05921 4.7566 4.05921 4.7569 4.05921 4.05
ACCEL 20.01.00 20.01.	32.4304 32.4302 31.4304 31.4304 32.4304 32.4304 32.4304 33.4304 34.4304 34.4304 35.4304 36.5404 36.5504 36.	6-4-6-1
### ##################################	2. 41804 2. 43804 3. 11332 3. 11332 3. 12320 3.	44000000000000000000000000000000000000
1.5004 1.5004 1.50412 1.504	2.3322 3.01232 3.01332 3.01332 3.0132 3.01322 3.013	のいり はく なく ない とり しゅうしゅう はってい しょうり はっしゅう はっしょう はっしょう はんしょう しょうしゅう はんしょう しょうしゅう しょうしゅう しょうしゅう しゅうしゅう しゅう
16.29412 14. 16.29412 14. 16.29412 14. 17.29412 14. 17.29412 14. 17.29412 14. 17.29412 14. 17.29413 14. 17.29413 14. 17.29413 14. 17.29413 14.	81.1434 811.7030 32.47.7532 30.00 KM 544 MFTFR SF 544 MFTFR SF 544 MFTFR SF 544 MFT SF 644 MFT SF 645 MFT SF 646 MFT	1010 - 00
18-28412 1 18-27422 1 18-27412 1 18-28412 1 18-28412 1 18-28412 1 18-28412 1 18-28412 1 18-28412 1 18-28412 1 18-19283 1 18-192	32.4730 32.47320 32.47320 38.47520 34.444320 34.444320 34.444320 34.444320 34.444320 34.444320 34.444320 34.444320 34.444320 34.444320 34.444320 34.444320 34.444320 34.444320	444 434
FESSUPE FESSUPE FACTOR P FACTOR P	1.7320 32.4775 21 38.4775 21 38.4 WHTER SE 54.4 WH.SEC 57.1 FT.SEC 57.1 FT.SEC 57.1 FT.SEC 57.1 FT.SEC	1
ACT NO SECOND SE	200 KM 200 KM 200 KM 544 MB/SEC 544 MB/SEC 571 FT/SEC 571 FT/SEC 571 FT/SEC 571 FT/SEC 571 FT/SEC 571 FT/SEC 571 FT/SEC	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CVM P 1007 PLEP 1007	10 WETER/SE 54 WETER/SE 571 FT/SEC 10 CS 10 CS	N - W - W - W - W - W - W - W - W - W -
7	144 48/SEC 171 FT/SFC 100-24 100-24	
23.50 CEL 25.50	14 14 14 14 14 14 14 14 14 14 14 14 14 1	1000
23 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	40.24	52.2
### ##################################	13455	2 2
		•
46.5217 33 1.19283 1. 8383	.01339	Ç,
1.19283 1.8 8383 1.8 0 23625117 18	74.6698	ec
23625117 18.	.74719 1	P;
	1.3343 37.02035 26	20
1 4	A SA	1 2
•	METER	Ĩ
CCFLFR 5.172436E		2.8877 34.098
LEL	200	O M III
0 B	32	15
625 .56662	355	10 PM
1.764A	.8160	[£7
125.20	.01451	159
12.9680 3	£076	5656
1510349 1	69159	37 P
_	1.4460	1.8058
	•35 404c6•	7.7.2
42.9680 34 15.10349 1.		8.9433 4C.1F18 -69159 .06644 1.4460 1.0347 -95464 2C.05421 2

1454.COD KP FADIUS SLENIVARLE JUEITER PROBE TASK 3 DESCENT RUNS JOE MANGRADE HIDTER PONTYFENSE ATMOSPHERE

	AT 71
	SECONDS AT 71
	11 10 -
THE PERCENTAGE	INITIAL TIME
1001/1001	.096,
JUPITER	= LNGl
JAC MUNICIPALL	PALLISTIC COEFFICIENT = .09C, INITIAL TIME

SEP 10 BADS

BAL. FCEF. 0.65/0.09/1.50

11	5 - 1 3 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11	A SPEC 5 5 4 6 5 3 2 5 6 5 2 3 2 5 6 5 2 1 0 3 1 6 7 5 4 9 7 5 4 9 6 9 1 5 6 6 9	.	7.30 7.30 .30490 .3026 4.4480 .39046 .1569
KELVIN FAHRENNEI		ELVIN PHRENNE!	** ** ** **	KEL VIN F BHRENNE 1	######################################
സംഗ	3. 17756 6. 17756 6. 17756 6. 17756 6. 17736 7. 1789 7. 1789 7. 1789 7. 1789	1 2 4	H SPEC 7.55 2.96346 .17403 5.7461 5.76599 6.57167	ix LL ∪∵ar	
PE 136.10	R SPEC 2.56085 .2905 .12885 7.7610 4.99160	URE 141.93	A SPEC 2.3 6690 . 4190 . 13824 7.1337 4.6 65337 6.8 9164	LRE 147.70 -193.79	M SPEC 11.45 2.23003 -4484 .14799 6.7773 4.25479
T E MD F PA T UP	M S S S S S S S S S S S S S S S S S S S	TEMPERATO	1 SPFC 11 980258 1 980258 0 10294 9 10294 9 2 2 6 5 9	FAR	M SPEC 1.68293 .5942 .1028 9.11028 3.23043 3.23043
RARS ATM BARS F+02 CES	ACCEL 19.60 . 97919 1.0213 2.1460 1.90810 1.90810 15.9693	BARS BARS E+02 CFS	ACCEL 27.083 1.0578 1.0578 1.0578 1.76405 17.88704	C 2 C C	ACCEL • ACCEL • ACCE • ACCE
. 732648 . 723068 . 003817 4. 7011615	ACCEL 260 CE 1.5257 1.5257 1.5257 1.27714 1.27710 23.70740		20045 10045 10045 10045 10045 20046 10146	1.061591 1.047709 0.03817 4.1468348	ACCEL 38.81 1.7610 1.07620 27.03620 27.03620 1.06473 1.06473
ESSURE CYN P COPFLER	ACCEL 36.04 • 52519 • 1.9041 • 07511 1.90.8198 1.90.8153	FYN P CCPULER FACE NO	AT CEL 41.03 4827 2.0481 37.02702 37.02702 37.02702 37.02703 37.02703 33.26491	TYN P DOPPLEP PACH NO	Arcel 48.26 45.15 2.1971 0.0269 34.4.90 1.1509
n n	2.00	ر الا		555	2000 2000 2000 2000 2000 2000 2000 200
45 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00.00 57.06 .32905 7.0390 10.56 64.8695 64.00 1.5596 7.29146	0 KM 2 KFT 2 MFTER/ 4 M9/SFC 9 FT/SEC	0.000 0.000	KETER MFTER MB/SF FT/SF	
5 000 16 404 66 061 3 1187 215 800	71.08 71.08 72.08 7.01752 7.01752 7.0023 1.9479 9.03884	2.00 6.55 61.39 3.357	4.00 TEMP 4.00 TEMP 4.00 TEMP 4.00 TEMP 4.00 TEMP 7.00 TEMP		7 T T T T T T T T T T T T T T T T T T T
ALTITLE VELOCITY	00 00 00 00 00 00 00 00 00 00 00 00 00	ALTTTEE VFL001TY	96.55 94.55 914.32 4.6559 8.01179 8.1179 8.1179 8.1179 7.554417	VELOCIT	100.02 100.02 5.0071 5.0071 79.01264 79.5275 7.5228 8.457657
1427.000 KM 290.203 CEC 4.67172 MTN 177862 HRS	10 H	424.000 KM 327.416 SEC 5.45657 MIN .190649 PRS	2	CZV	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RACIUS 71427.0 TIME 290.3 6.571	11 N S 2 S U F E N S S S S S S S S S S S S S S S S S S	TIME 327.416 OFF 37.016 OFF 327.416 OFF 37.416 OFF 37.4	10.00 C K K K C C C C K K K K C C C C K	10S 7:	INSTRUCTOR NEWS OF WEAR STANDS OF WE

SFCONDS AT 71454.COD KP RACTUS . SUBDITABLE JUFITER PROBE TASK 3 FFSCFNT RUNS
JAL MCNOGRAFF JUPITER GOOL/GENSE ATMOSPHERE
RALLISTIC GOEFFICTENT = .090; INITIAL TIME:=

# 32 2 2 5 5 C VELOCITY				7							0.001		
TTHP DRESS TTWE DRESS WORLE ACCEL ACTEL ACCEL H SPEC H SPE	i ii		>		/astsh	FC			v				و
The color of the	TAN TO SE			175.29		0 ā	رد الان دا الان		r L				
195.11 128.52 100.00 1	COF MEAS CV/MEAS CFBS/KW	TEMP	PRESS	TENC	PRESS	BCCEL	ACCEL				H SPE	SPE	-
150 1365 120	•	145.11	#	109,08	87.47	62.76	55.04				11.8	9	
F. 1247 5.3585 6.1273 1.0554 7.1935 7.2686 2.3265 1.2867 1.357 1.1772 1.5008 1.3964 1.7018 1.2016 0.0153 1.0594 1.457 1.2018 1.2	•	.16001	•	.21322	2	14278.	242543		•	•	2.0886	. 5964	'n
10160 2.3679 73.883 64.8340 51.6766 3.6272 .03162 .01263 .13762 12.434 74.075 .15030 5.15042 5.5751 12.43 74.075 12.620 5.5200 5.15042 5.5751 12.63 7.0777 74.0723 5.6419 6.6425 12.620 5.6419 6.6425 12.620 5.6419 6.6425 12.645	SACC ANTAC	F. 2497	ທ້	0053.7	۲.	2.6848	2.3505		_		. 478	.385	
13221 36403 44577 51941 77226 23.2207 15.127 14.1577 4.1577 4.1577 5.2207 7.8003 5.0342 4.1577 51941 77203 5.0203 5.0342 4.1577 51941 77203 5.0203 5.0342 4.1577 5.1942 1.1576 1.	のこいにしのとるい	.01160	.01353	.01547	.01935	.62712	.03102				.1580	1986	•
10-51451 37479 47591 4750 4750 4750 4750 4750 4750 4750 4750	4E DS/BAP	PE. 7297	73,8893	0	1.6	36.8682	32.2407	Ň	-		6.329	.034	-
10.51451 93.31310 P2.5102 65.83047 77.80651 41.25599 33.(6714 22.1452 11.72277 0.46155 6.95220 5.10.51451 93.31310 P2.5102 65.83047 7.728065 41.25599 33.(6714 22.1452 11.72277 0.46155 6.95220 5.10.51451 93.31310 P2.5152 65.83047 77.80651 41.25599 33.(6714 22.1452 11.72277 0.46155 6.95220 5.10.5141 97.5277 0.46159 93.07 0.46159 0.461	JECK/MF85	.31201	.36391	11	.51	.72632·	.82560		-	•	4.0729	0641	w
100.514.51 93.91310 PP.21202 65.83047 47.80861 444.25769 33.(6714 22.14852 11.92277 8.46153 6.85228 5.86100 KH ALTTICF -72.966 KH 1.462214 BARS TEMPERATURE 159.357 KELVIN 10.259 GKH 1.462214 BARS TEMPERATURE 159.357 KELVIN 10.259 GKH 1.46231 ATP 1.462214 BARS TEMPERATURE 159.357 KELVIN 10.259 GH 1.462 GH 1.346 GH 1.3	PE AS / TO F G K	3.2050	.7479	2.4052	1.9253	1.376	1.7054		,		. 245	. 197	
17756 WELOTTY 5.000 KM TATTLEF 7.000 KM	F .	c.5145	3,91310 8	.21202 6	. 83	7.10861	41425799	6	25.	Ŧ	8.4015	8:22	'n
10.359 SEG VELOCTTY 20.056 KFT 10.359 SEG VELOCTTY 20.056 KFT 10.359 SEG VELOCTTY 20.056 TAPES COPPLETE 3.628 SEG	ACTUS 7	X	ALTITUE	.	E Y	1 0	SSURE	1.405814	8485	TEMPERATI	159		2
10256 WTM SG VECOTTY 50.051 WTER/SEC COPPLE 30.02215 PARS. 10266 WTM SG STATE WASSEC COPPLE 30.02217 PARS. 1564.5 141.10 123.9 99.07 71.05 62.29 50.04 14.21 ACCEL ACC				-22,96	6 KFT	•		1.476253	ATR		-172		NHEIT
11766 MTN 117966 MTN 117966 MTN 1184,786 1184,787 1184,788 1		035 652°	>	Ψ,	METER/	EC		.003819	BARS				
TEMP PRESS TEMP ORESS BOCEL ACCEL ACCEL ACCEL MCCEL MC	R. 1	7266 MIN		3	MR/SEC			3.626998	8				
16445 14111	. 13	211		3				.058337					
154.45 1441.10 123.59 99.07 71.05 62.29 51.04 33.69 17.35 13.26 11.81 6.7753 69.2174 61.5491 48.4134 34.5441 33.2100 24.1422 16.021 7.955 3.6755 3.6492 24.8076 3.2256 3.6492 2.6753 69.2174 61.5491 48.4134 34.5441 33.2100 24.1422 16.021 7.9558 3.6492 2.15958 3.6492 2.15958 3.6492 3.44801 3.2558 3.6492 3.2150 3.2258 3.6492 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2417 2.9254 3.2492 3.2459 3.2459 3.2459 3.2459 3.2459 3.2459 3.2589 3.2459	INSTRUMENTS.	TEND	5300	TEMB	Ų.	ij	ACTEL	ACCE		I	Jady	T TOPE	
6.6706 5.7192 5.0056 4.0066 2.8069 2.5001 2.0026 1.3426 5.6765 2.6090 2.5001 2.0026 1.3426 5.755 5.0056 0.0006 0.0	V	164.45	141,1			71.05	62 • 29	AD - 17		. "	13.26	16.81	
E.F706 5.7192 5.0056 4.0065 2.8649 2.5021 2.0022 1.3426 .6765 .5100 .4100 .4100 .6133 6.1532 1.6520 .21530 .21530 .21530 .6143 6.1542 .01553 6.2544 .34134 .34.5441 .32130 .64442 .12534 1.2553 .12553 .21532 .21530 .21543 6.2544 .34132 .29264 .34132 .38997 .48724 .38729 .97124 1.55393 2.88537 3.82764 4.72053 5.4172 2.9299 7.5663 1.4672 1.26994 45.65627 1.56144 1.55393 2.88537 3.82764 4.72053 5.4172 2.9299 7.5603 1.4672 1.26994 45.65627 1.59144 ATA	IP/NEAS	.16941	.174R			5064£.	.39 27 0		Ī	-	1.96083	2.43878	N
### 1938 ### 1945 ### 1945 ### 1945 ### 19310 ### 1942 ### 1945 ### 1945 ### 1945 ### 1945 ### 1945 ### 1945 #### 1945 #### 1945 #### 1945 #### 1945 #### 1945 #### 1945 ####################################	IE BC/KW	6.6786	5.719			2,8649	2.5061		_	•	. 5100	.4100	'
Part	BESTAFAS	.01238	.0144		.02066	.02895	.03310		Ī	7.	.1F832	.21150	
2-226 4-36997 -48721 -58437 -17829 -97164 1-45393 2-88537 3-82764 4-76633 5 2-4172 2-9299 7-55443 2-0525 1-4676 1-2849 1-1020	IF BS/BBB	PC. 7753	69.2174	5.5	Ξ.	4.546	39.2100	€/J	=		5.5410	4.7282	
2.4172 2.9299 7.5643 2.0525 1.4676 1.2849 1.029 6.6878 .3466 .2613 .2101 2.121.32406104.03558 01.06021 72.41626 52.16994 45.68867 36.61074 24.50762 12.40419 9.37771 7.55143 6 2.000 KM ALTITUR -10.000 KM PPESSUR 1.799118 BARS TEMPERATURE 165.213 KELVIN -72.228 SFC VELOCITY 46.9995 WETRACE 0 VM P. 072.814 ATM -162.227 FAMENNE 2.228 SFC VELOCITY 46.9995 WETRACE 0 VM P. 072.814 ATM -162.227 FAMENNE 154.184 FT/SFC PACE ACCEL	FEK/4EDS	*56564	.3413	.38997	.48721	.68137	.77 629		+	2.8	~	4.76063	ŧ.
121.32406104.03558 01.06021 72.91626 52.16994 45.68667 36.61014 24.50762 12.40419 9.37771 7.56143 6 2.000 KM ALTITUR -10.000 KM PRESSURE 1.759118 BARS TEMPERATURE 165.213 KELVIN -22.808 KFT -46.909 METRYSE 10.000 KM -162.227 FAMENNE -162.237 FA				<u>.</u>	٦,	1.4676	1.2849			•	. 2613	.2101	
### TEST COUNTY #6.9999 WETER/SEC DVW P	₩.	1.32406	104.0	و	91626	~	586	•	24.	12.4	•	7.56143	Φ
### ##################################	ACTUS	¥	4	-10.0	•	1 8	SSURE	1.759118	BARG	1 1	E 165.2	2	z
## 15339 FIN ## \$2000 HB/SEC			AEL		METER / S	<u>.</u>		10.00014	7 T T T		-166.6	_	
153357 HRS 156.184 FT/SFC PACFEL ACCFEL ACCFEC ACCFEL ACCFEC ACCF					MB/SEC	,	DEL EP	3.4073845	ű				
TEMP PRESS TFMP ORESS ACCEL ACCED AC	• 15			-	FT/SF	Y A	GF 39	.053757					
185.08 156.78 139.06 111.45 79.89 70.03 56.22 37.82 19.41 14.81 12.04 -14078 15621 18762 2.23441 3278 3742 46770 6597 1.35990 1.84465 2.25531 7.14078 16421 18762 2.23441 32.78 37452 46770 6597 1.35990 1.84465 2.25531 7.14078 16422 6.01899 0.0279 0.0200 33.082 0.0352 0.04410 0.05611 133.57 17.894 4.4497 75.8473 64.9928 56.8549 45.4519 32.4414 28.3755 27.671 15.011 7.4866 5.58086 4.46056 9.277 .2232	INSTRUMENTS	TEMP	SSad	TEMP	ES	ACCEL	AC CEL	PCCFL	ACCFL	S.	N SPEC		
-14078 -15421 .18762 .23441 .3278€ .37452 .46770 .6590 1.84465 2.29531 2 7.14078 -15421 .13899 1.84465 2.29531 2 7.14078 .21089 5.29931 2 .4357 .1789 6.7309 6.5300 0.5500 0.0550 0.0550 0.0559 0.0550		185.08	‡	139.06	3	79.89	70.03	56.22	37.82	5	14.81	71	
7.1032 6.0899 5.3300 4.2660 3.0501 2.1381 1.4288 .7195 .5421 .4357 .04357 .17894 .228774 .01539 .01789 .01789 .02878 .75.843 64.0928 56.0878 .02882 .22874 .17894 .017894 .017894 .017894 .017894 .017894 .017894 .017894 .017894 .017894 .017894 .017894 .017894 .017894 .017894 .01789 .	CP/MEBS	-14078	•	.18762	*	.327e£	437452	. 4677	.65587	4.00	1.84465	ç	"
.01119 .01539 .01759 .02200 .03082 .03525 .0441C .06631 .13357 .17894 .22474 .27 75.8473 64.9929 96.8549 45.4519 35.4414 28.3725 22.6761 15.0611 7.4866 5.5884 4.4497 3.6 .27481 .32054 .36624 .4575F .64080 .73107 .51257 1.26619 2.71217 3.60086 4.46056 5.35 3.6588 3.1198 2.772 .21854 1.5629 8.3679 1.0553 .3720 .3886 .2777 .2232 .1	IEBS/KP	7.1032	ø	5.3300	9	3.0501	2.6701	2.1381	1.4288	•	.5421	. 4357	
75.4443 64.9928 56.8549 45.4619 32.4414 28.3725 27.6761 15.0011 7.4866 5.5884 4.4497 3.6 .27481 .32054 .36624 .4575F .64000 .73107 .51257 1.26619 2.71317 3.62086 4.48056 5.35 3.6288 3.1198 2.77304 2.1854 1.5629 8.3678 1.0552 .7320 .3686 .2777 .2232 .1	DEN/MEDO	. 01719	•	.01759	0220	9306	-03525	. 6441	•	턴	.17894	(V	.27
3.6288 3.1198 2.7724 2.1854 1.5625 8.3674 1.0653 3.720 .368 6.277 .2232 .186	EBS/BAR	75.8443	90	56.8549	454	1 4 to 1	28.3725	22.6761		7.4	4.000	3	3.6
3.196 2.777 2.185 1.195 2.185 1.185 2.185 2.777 2.232 1.185 2.186 2.277 2.232 2.186	TOWN TO THE PORT OF THE PORT O	144/20	• 1	47000	なってい		.73167	. 51257	•	2.71	3.60086	9	5 . 25
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 6 2 9 9 3 • 5	3.1198	5.7.04	2.1854	1. 5625		**		•	•	. 22	.18

SECONDS AT 71454.000 KM FADIUS . SLRVINARLE JUPITES PROBE TASK 3 FESCHUT RUNS
JOL WEROGRAPH JUPITER CONLIGENSE ATMESPHERE
ROLLISTIS GOWFFICTENT = .05C, INITIAL TIME =

EAL. CCEF; r.6F/0.09/1.50

SEP 10 BARS

RACTUS 71489	71400.CCD KM	ALTITLES	-13		966	SSURE	0571	- T -	TEMPERATL	URE 171.0	DES KELVIN	F 12
10.3 10.3	F18.046 SEC 10.30076 MTN .171670 PRS	VFLOCITY	147.44.023 4.6655 145.090	METERIS MANSEC ET/SEC	EC CC	CYN P FFLFR C+ NO		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		<u>.</u>	N L L	r E
INCITATION OF PERSON OF PE	00000000000000000000000000000000000000	1705 1745 1745 1745 614707 1311384 131168	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4 2 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	88 88 88 88 88 88 88 88 88 88 88 88 88	20		14. 00.00 CT	M 20 PEC 1 30 95 90 90 90 90 90 90 90 90 90 90 90 90 90	# # # # # # # # # # # # # # # # # # #	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2 SPEC 2 - 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
RECTUS 71406.010	A MARIA	26.311121 	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R 3772	2.40779 2.40779 PRE EC CC	SSUPE CYN P		0 1446+	0351 6151 6151	176	0 1215 7 KFLV F FFHR	6506
.10	Sad Figure 1995	9	136.811 TEME		۹.	Ė	.046128		0 0 2	U.S.) 	SPEC
NC OF PERS	531.31		. a: a:	34.5 34.5 2083	29108	86.59	4 4	46.86 .E2177	23.93	1.6419	14.7	12.47
TEBO/KE BARS/MEAS	.01486		6.0048 01082	. 02479	3.435	3.0072	2.5	1.6683	. 15022	.2C10	489	• •
MFBN/BBR DFGK/MFBS MFBN/DFGK MFBN/DNGHT 1	67.2915 .24391 4.0099	57.6568 .24450 3.5149 138.499181	50.4483 4 .72508 7.0762 21.22498 97	0.3425 .40619 ?.4610	78.7431 .56821 1.7599	25.1887 • 64.012 1.54.05 6(.76464	20-13C2 - P1C76 1-2334 48-6725C	10.21.37 x 10.21.37 x 0.82.39 32.54046	6.65/1 2.41324 .4144 16.42566	4.5761 3.20524 3.2150 12.39423	3.5526 3.55126 3.55126 5.97508	6.26595 4.77143 2.2096 8.36207
FAUTUS 71x0x.com KM 17ME 751.545 SF 12.69969 WI	751,545 SFC 751,545 SFC 12,6959 MIN ,211651 MPS	ALT UCLAN	-19.000 -62.336 -62.336 -39.396 -5.2381 -129.251	KA K		S CUPE FYN P FCLEP	2.770166 94 7.723942 A1 .000819 B2 7.856269+	947 647 9405 +02 CFS	TF MPFRATLR	.RE 182.7	EZ FEHRENN	FE 1.1
INSTRUMENTS	TF ND	Solida		PDFSC	BCCEL	ACCFL	ACCEL	ACCEL	Juds A		P SPEC	P SPEC
SELM HO DN	254.93			153.39	189.85	4.	77.19	51.80	26.40	-	16.24	13.7
X	.11496 P. 4705			• 19662 5.0866	3,6366	V, T	7.47.6	1.7015	5.1	\	1.53480	4322
EBES/NEBS	.01573			. 42624	.8362	. 04 2 5 3	. •		8	110	.26670	.32119
MEAS/AFR	F3. FF89	54.4776	47.6591 3	18.1133 .78381	27.203E	. 5	19.0217	12,6590	6.2945 2.28216	~ ,	3.7496	3.1135
,	26022 et	3,7201	Č	2.6055	1.8624	1.6302 66.41379	1,3051		17.93227	13.52430	.2649	.2216 9.11568

٠. SLRVINDELF JURITSE PROSE TASK ? CESCENT RUNS
JOL MCNOSPARE JURITER GOOL/CENSE ATMOSPHERE
PALLISTIC GOEFFICIENT = .090, INITIAL TIME =

SEP 18 BARS

EAL. CCEF. 0.65/0.09/1.50

SECONDS AT 71454,000 KM FACTUS

			•	XF7	•		4.15.724 4.15.724			-126-1	A FAMPHARIA	1571
TIMF 646 14.0	848.234 SEC 14.08389 MIN .233398 HRS	SEC VELOCITY MIN HRS		WETER/ MB/SEC FT/SEC	SFC PC	CVN P PCFFLFP PACF ND	2.7 (2.2 cq. 2.4 cq. 2.3 cq. 2	9485 +02 CFS		•	υ	
INSTRUMENTS NC OF MEAS KP/HEAS	7FMP 281.03 -11174	~ • •		. 0 . 0	#CCEL 121.03	ACCEL 105.03 129747	85.02 85.02 17159	400	M SFEC 29.31 1.10742	2.0 2.0 717	17.80 1.8375	15.00 2.19345
Ex.	60.1575 51 0.1575 51 0.1738 3 0.5013 3	13 7.6721 52 71940 13 51.5544 4 18 25357 13 3.9437 16155.06175144	6.7143 .02217 5.1026 5.8974 3.45111	36.0772 36.0772 36.0772 36.0701 2.36205 2.7620	3.00 00 00 00 00 00 00 00 00 00 00 00 00	3.3616 22.52.11 .57.710 1.72.80	2 - C - C - C - C - C - C - C - C - C -	1.00254 1.00254 30.7274 30.7274 4.00264	.9030 .16774 5.9615 2.15437 19.52480	2.000 4.000 5.000		0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 A DO TUS 71397, COO TIME 022, 665 15, 39144	1397. EDD KM 022. EER SEG 15.39144 MIN .256257 FRS	C VF	-255.000 -25.000 -25.000 -25.000 -25.000 -25.000	KAT KFT METER/ MB/SEC FT/SEC	u u	PPESSURF CYN P CCPFLFF	33. 6662215 6162215 606425 6066246	BAPC ATP BAPC E+O2 CPS	TEMPERATU	LRE 194.46	SEE FERENME	te I T
NOTACIPENTS COT MESS	30 P = 6 F W P = 6 F W P = 6 F W P = 6 F W P P P P P P P P P P P P P P P P P P	2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	231-72 2-141-72 2-141-72 2-0320 2-0323 2-27-69 2-6494	24 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	20000000000000000000000000000000000000	### PC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	じっこう ちらじき いま		7 SPEC 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M SPEC 1 24.07 1 36663 2 7160 2 7160 2 71700 2 71700 15 97943	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M SPEC 2 - 150 - 360 - 3
PACTUS 71394,000 TIMF 1010-107 15.83345		ALTILOF C VFLOGITY N	-28.00 -91.854 33.558 6.1559 110.099	METERNS SHANNEC	75 1987 1987 1987 1987	ESSURF DYN P COFLER		RARS ATP BARS E+U2 CFS	TEMPERATUR	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	A TENE	LIB
INSTRUPENTS NC OF MEAS KFINES/KE MEAS/KE	16M9 237.63 2005 6.05645 6.05645 1.05694 6.05694	PPESS 240.57 -11734 8.5725 46.4952 4.3399		2004 - 200 5 - 404 - 50 5 - 404 - 50 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACCFC 2027-25 30-73-3	4 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		34.677 . 004.67 1.0016 1.0016 . 1.8615 5.3721 1.94.198	7 SPEC 1.32730 1.32730 .27334 4.01177 2.57211	1. CPGC 1. CPGC 2. CPG 3. CPG 4. CPG 5. CPG	1 SPEC 10000 000000

SECONDS AT 71454.000 KM RABIUS . SUPVIVABLE JUFITER DRORF TASK 3 CFSCENT DUNS
JPL MCNOSRAFF JUPITFP GOOL/CENSF ATWCSPHFRF
BALLISTIC COFFFICIENT = .091, INITIAL TIME =

Seve 01 das

PAL. CCFF. 0.65/0.09/1.50

RAFIUS 71391.000		: •	1				·,		-		**************************************	P F F F	ENHEIT
11MF 1181 130.1	1181.5ck 13.36159 .306027	S N S	VELOCITY	31.91 6.474 104.69	WETER/A MR/SFC FT/SEC	FC	CYN DEFLED	. 003823 2.3135946 . 032701	BARS F+02 CPS				
INSTRUPENTS NC OF MEDS KP/MEDS	, 4 (C)	EMP - 23	315.77	1EMP 6.42 2750	11 . 0	#CCFL 158.39	AF CEL 138.71	ACCE 11.1	ACCEL 74.45 .47F76			23.03 23.03 1.57491	19.3 19.3 1.8851
PEPS/KM BARS/MEDS PEPS/BAR	10.4945 .01043 51.4707	0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	8.9621 .02267 44.1119	. 8429 02501 . 5928 3	6.2760 • 03240 0.8661	4. FRSS	3.0256 • 05188 19.2760	3.1421	2.09745 .09745 10.2816	1.0528 .19567 5.1106		• M) • C	
PERSONERS MEDS/PSCHT 24	.1×res F. 1746 245.67240	740 740 290210	21787 4.6869 .628791	0315 0315 3828147	197 261 15510		2.0179	73.91793 73.91793	1.07.49	5 2	~ ~ !	3.05382 .3264 15.02521	12.5709
CTUS 7	l .	T F F F F F F F F F F F F F F F F F F F	ALTITLEE VFLOCITY	77 -34.000 -111.540 77 -30.385 6.800	KM KFT METER/S ME/SFC FT/SEC	0.00 P. 0.00 P	RESSURE DYN P DCFFLFR FACH NO	5.402067 5.402067 5.202087 2.202087 6.0207	9466 ATR 9466 6402 CFS	tu. du	-78.1		HEIT
INSTRUPENTS NO OF PERS PERSYNER PERSYNER PERSYNER OFCK/MFRS MFRS/MFRS MFRS/M	408.35 408.35 10.6785 10.6785 40.6785 45.6054 17720 17720 5.6433	<u> </u>	### ##################################	7 FM F 300.51 8.2359 8.027451 8.23591 8.23591 8.23591 8.23591 8.235571 8.235571 8.235571 8.23		2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	AFCEL 150.75 4.1250 7.1250 18.7544 18.75446 2.1138	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P SPEC 3 (6.95 1 - 2 (3.70 2 - 2 (2.40 3 - 6 (2.40 7 - 3 (4.27) 2 - 3 (4.27) 2 - 3 (4.27) 2 - 3 (4.27)	1 SPEC 1 5 4 96 1 5 6 10 6 2 6 6 6 2 2 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 SPEC 20.97 1.79702 4.1365 3.49592 13.59592
ACTUS	. 660 . 180 . 180 . 180	F F S S S S S S S S S S S S S S S S S S	ALTITUE VFLOCITY	CF -37.000 -121.391 TY 7.1324 05.049	KFT METER/S MB/SEC FT/SFC	EC DESCRIPTION OF THE PRESCRIPTION OF THE PRES	SUPE SUPE FLER	6.107240 6.027277 0.02823 2.100520	9 A P P P P P P P P P P P P P P P P P P	TEMPERATU	.nE 217.81	O KELVIN 2 FAHRENMET	HEIT
IN STRUMENTS KV VEFAS KF VEFAS KF AS VEFAS FFAS VEFAS	1.00 C C C C C C C C C C C C C C C C C C		9872.19 .10132 9.8790 .02497 40.0411	3. 12. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	200 ESS -14466 -14466 -13414 -1341	4000 600 600 600 600 600 600 600 600 600	ACCEL 163.40 • 23.135 • 0.3225 • 0.5214 • 0.5200 • 2210		**************************************	2	M S C D E C C C C C C C C C C C C C C C C C	1. CPEC CPEC CPEC CPEC CPEC CPEC CPEC CPEC	P SPEC 22.65 1.715.65 5830 5830 2.33652 3.33665 2.34655

SECONDS AT 71454.COD KM RADIUS . SURVIVARLE JURITER PROBE TASK & CESCENT RUNS
JOL MCNOSPAPE JUPITER CONL/CENSC ATMOSPHERE
RALLISTIC ODEFFICIENT = .090, INITIAL TIME =

#ALLISTIC COEFFICIENT = .090; INITIAL TIME = EAL. CCFF. 04570.09/1.59

TIME 1405-174 SEC 23-41956 MIN - 390325 MIN STRUMENTS 466-39 WEASWEAS 466-39 MEASWEAS 12-0598 EARS/MEAS 46-3967 EARS/MEAS 46-5967 MEAS/MEAS 46-5967 MEAS/MEAS 46-5967 MEAS/MEAS 46-5967 MEAS/MEAS 46-5967 MEAS/MEAS 46-5967	FE SEC FE HIN	VFL OC 11V					4,101,0					
20	SE PEN		27.	HETER/S	נכם	۵	. 063623	•••				•
*** **********************************			7.4717	MB/SEC FT/SEC	FOPPL	8. B	2,005374E+02 .027212	÷02 Cbs				
S U UX	TENP	PRESS	TEMP	PPESS	BCCEL	ACCEL	ACCEL	2	M SPEC	SPEC	H SPEC	P SPF
์ พ_พ±	465,39	402.48			281.74	176.65		94.68	47.84	36.13	25.10	24.45
ທ່ທ⊻	,08292	.09673		.13814	.19332	680229		.41356	.82453	1.09710	1.36856	1.63892
ທ່ທສ	2.1598	10.3380		7.2389	5.1728	4.5272	3.6233	2.4180	1.2128	. 9115	.7307	.610
S/RAP K/HFBS S/DECK	,02242	.02619		.03739	.85236	. 05 986	. 67485	.11240	.22551	.30131	.37743	.4538
K/MEBS S/DECK	1965	38.2217 3	60	6.746	15, 0967	16.7061	13,3552	8.8568	440 4 · 4	3.3188	2.6495	2,203
S/DECK	.16131		70	.25974	.37608	.42671	25925.	. 80453	1.60404	2.13430	2,66239	3.18834
367	6.1991 .3747026		4.6503 .60722184	3.7211 .5467113	2.659G 1.9068911	2.3271	1.4625	1.2430	.6234 31.01079	.4685 23.33364	.3756 18.72719	.313(
	7	A1 T T T 16		3	7 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	30115	700000	2040	101111111111111111111111111111111111111	•		
) ;			-141.07		•		7.628256	, <u>1</u>		-46,662	C2 FAHRENHETT	HEIT
TIME 1516.13	34 SFC	VELOCITY	56.	METER/S	U		.062623	RAPS				
25,26899	NIA CO		۲.			ECPFLEP	1.91668EE	+02				
.421148	F8 F8S		P6.770	FT/SEC		ž Ł	025676					
INSTRUMENTS	TFMP	PopeSS		DDESS	ACCFL	ACCEL	JETO	ACCFL	N SPEC	H SPEC	r SPEC	H SPE
S#	506.38	434.18		304.23	517.59	190.52	152.61	102.08	51.54	36.90	31.32	
KH/FEES	.07526	• 0924€		.13205	·18479	. 27 115	, 26264	16637	.78843	1.04921	1.30900	1.5678
	12.6168	10,8155		7.5731	5.4115	4.7359	3.7962	2.5293	1.2693	. C534	.7639	.637
v,	94220	12738	.03129	.03912	. 6547 9	₹ 06 2€ 3	. 17832	.11750	23588	.31512	35466	.4745
	42. 6286	36.5283 3	~	5.5623	11,2516	15.9670	12.7666	0415.9	4.2395	3,1734	•••	•••
	15419	_		• 25688	15050	41077	. 51326	,76914	1.53381	2.04113	2.54652	6640 *
MEBS/DSCHT 320.91	6.4#55 .9280828	5.5595	4.8651 .52225198	*.8924 . 1787414	2,7817 1,5718312	25.91341	1.5483 99.15160	10352*99	33.26620	\$25.0.25 55.055	26.000.02	.327ÿ 16.78391
	,		***************************************									
RACTUS 71376.009	69 KM	ALTTICE	-46.		PREC	RESSURE	~		TEMPERATUR	5.35° 3	18 KELVIN	
			ï	K F F F F F F F F F F F F F F F F F F F	,	•	٠, ٢	D T P		_	ć,	HEIL
11ME 1542,158		**L 05 1 17	22	10 10 10 10 10 10 10 10 10 10 10 10 10 1	٠		٠, ١	3 T C C C C C C C C C C C C C C C C C C				
.45337.	San 12			FT/SEC		PACE NO	232720.	ا د د				
INSTRUMENTS	TEMP	PRESS	TEMP	PRESS	ACCEL	ACFFL	ACCEL	ACCFL	M SPEC	H SPEC	H SPEC	# SPEC
v:	546.85	467.33	70.6	327.43	234.27	205.02	164.22	169,81	55.41	41.80	33.64	28.2
SVIHEVE	.07585		.10111	.12636	.17684	.20267	072G2 ·	04975.	.75473	1.00450	1.25337	1.50136
	3.1847	11.3022	1903	7.9137	52 654 7	4.9489	3.96.65	2.6427	1.3250	\$665.	.7978	.6661
	.02452		.03270	.04049	.85726	. 06545	. 06185	.12289	.24645	.32920	.41224	.4955
	46.7780	2046	577¢	10.4578	17.4634	15.2777	12.2177	8 1376	4.0577	3.6377	2 - 4257	2.017
	.14755	•17212	19670	. vense	344	96262	. 4012	72643	1.46.825	1.95414	2.43830	6
WE DE /MEEK	6.7774 5.	5.8097	5.0°t.6	4.0679	2.906.7	52952	7 . 645.6	1 . Grant	.6811		.4101	4245

SUBJIWABLE JURITER PROBE TACK 3 DESCENT RUNS
JPL MCNOSPAPH JURITER CONLICENSE ATMOSPHERE
PALLICATION OFFICIENT = 0000, INITIAL TIME = 8.

	FACIUS	
	¥	
	SECONDS AT 71454.000 KM RACIUS	
	4	
	SECOND	
	11	
1	414E	
MINCS	NITIAL	
上いると	[·]	
こつしてい	• 0 •	
er Lad	•	
IIdan Haraba	eallicaic coffesicient = .090, initial time = 8.	
	BILSITTE	

SEE 10 asoS

EAL. CCEF. C.65/0.09/1.50

RDC195 71375,000	.000 KM	ALTITLEE	CF -49,000 -160,761	F L V V V	PRE	PRESSUPE	9.547486	BAFF	TEMPERATURE	F 241,155 -25,592	KELVIN FAMRENMEIT	± E 11 →
11ME 1753.24 04525.05 487.04	753.244 SEC 9.22240 MIN 487040 HRS	VEL OF 1TY		WETFR/SF Mg/SFC FT/SEC	U	4 E S	.002822 BAR 1.7568615+02 .022950	BARS +02 CPS				
TRETRUPENTS	TCND	25300	TEMP	PRESS	ACCEL	ACCEL	ACCFL	ACCEL	Judy W	SPEC	# SPEC	# SPEC
NO CH MEBS	E 8 F . 45	501.06		351.67	25 1.4 B	220.17	176.23	117.80		44.83	36.07	30.22
KF/FBS	.97266	.08476		.12105	16942	.19354	. 2419 E	.36254	•	•	1.20133	1.43919
F BS/KM	-13,7634	11.7982		9.2609	F. 9026	5.1657	4.1340	2.75.83		1, [388	. 6324	8769.
PACC/NFBC	. 12560	. 02987		• 04269	8 4656.	.06834	.08546	.1282A		.34355	. 43017	.51708
WE AS / B A R	9c. 0 E 69	33.4744	~	27.4261	16.7272	14.6339	7	7.7053	7.8877	2.5108	2.3247	1.9339
DECK/MF AS	.14135	16489		23549	8 205 F.	.37 FED		,7 E52 A	1.40697	1.87279 2	2.33784	2.80150
PEAS/DECK	7.0749	6.0647		4.2464	3,0342	2.6553		1.4179	-7117		.4277	.3570
-	Q ∪	324.161632	25	7.00456163	-	41.992CE1	113,69152	75.87109	38.08729 2	28.64114 22		19.19464
RADIUS 71372.000	OFF KM	ALTITUES	;		PRES	PRESSURE	10.025582	BAFS	TEMPERATURE	1	1	
			-164.042				964675	4 4		-22.090	D FAFRENNEIT	HEIT
TIME 1774	338 915.	VELOCITY				0 21	728230	•				
50.9	20.91F10 PIN		8.6551	MP/SFC	ວິວ		1.7322835+02	5+05 LES				
64.	Said Saidest.		78.386	ET/SFC	FACE	ر د 40	402220					
INSTRUMENTS	TEMP	90FSS	TFFO	SSEdd	BCLEL	ACCEL	ACCFL	ACCFL	N SPEC	N SPEC	M SPEC	# SPEC
NO OF PERS	FOC. 30	513, 83	24.044	359.98	24.743	225,36	180.49		60.43		36.90	30.92
KP/PFAS	.07164	. 18357	06250	.11936	.1670S	. 19 [84	.23852.		.71319	.94935 1	1.18473	1.41936
PFBS/K#	13. CER7	11,9656	10.4708	A. 1780	5.9863	5.2349	4 . 1925	2.7073	1.4022	1.0534	. 6441	.7045
PARS/MEDS	102594	•		.04330	.46063	• 06931	. 08666	.13010	.26086	.34840	. 43622	. 52433
MEAS/BAP	38. 5083	7.5	~	23.0972	16.4925	14.4285	11.5389	7.6862	3.8335		2 - 2924	1.9072
DEGK/MEAS	.13965		.18616	.23267	. 725£2	80212°	75747.	. 69FR3	1.39020	1.85054 2	2.30937	2.76672
ME AS/DECK	7,1610	6.1385	5,371F	4.2980	3,0710	2.5876	2.1500	1.4351	.7193	*0*4.	. 4330	.3614
MERCAPORET MAR SAUSTANATOR	96.54354	331.4008829	0	.0720E1E	5.852821t	45.15c201	116.18834	77,56633	38,93198 2	29.27469 23	23.46019	19.61709

ACCITIONAL MIT PATES PEQUIRED IN READ OUT ENTAY CAIR CACE 3.78A THICE 7.577

SCENIWAELE JUFITER PRORF TASK 3 GFOTFNT RUNS JPL WCNOGRAFH JUPITER COOL/CENSE ATMOSPHEME PALLISTIC COEFFICIENT = 1.500, INITIAL TIME = 17°6,°01 SECONDS AT 71272,COO KW RADTUS

	8 SPEC 60.000	* SPEC	3 SPEC - 915
	7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	* SFEC	7 SPEC SPEC
	4 SPEC 40.000	7 SPFC	7 SPFC 45 873
	000°G2	* SPFC	7 09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	ACCEL 15.000	ACCFL	ACCFL 120.666
	ACCEL 10.000	ACCFL 30.000	ACCEL 180.491
	ACCFL 8.00C	ACCFL 30.00	PCEL 225.361
Save	ACCEL 7.000	ACCEL 30.000	ACCE1.
Save Of ass	PRESS 5.001	10.00 10.00	2
9/1.59	0005) TEMP 4.000	10.000	FPENTS TEMB 449.725
0.65/0.0	PVALS (SEC PPFS 3.500	4PLE FPFCS 1C. COJ	NUS MEDSURE PRESS 513. F30
8AL. CCEF. 0.65/0.39/1.	SAPPLE TATERVALS (SECONDS) TEPB PRESS TEMP T. DOD 7.500 4.000	PIT\$ DEP C1MDLE 12 TEWP 10.000	NC OF PREVIOUS MEDSURFHENTS TEMP PRESS TEMP 919.302 513.830 449.725

REGLIPPE BIT CATE = 61.7262 FITS/SECOND

FATRY DATA IN STURAGE = 5800.0 BITS

EBL. CIFF.	r.he/3.3	9/1.50	SEF 13	P&25								
FACTUS 71372 TIME 1734 7949	1377-100 KM 1774-005 CFC 20,01510 MIN 499545 HRS	ALTITUE VELCOT	LTF -50.009 114.042 117 07.539 35.3344 320.009	KAT KAT KATEN KAN YEE KAN YEE		SSURF 1 CVN P PELEF CF NC	0.025982 9.854875 0.053734 7.0720146	ATR ATR AAF AAF AAF	TEMPERATU	PF 243.1	CO KELVIN	113
The stourents with the service of th	60000000000000000000000000000000000000	514.83 514.83 514.93 612492 65383 1.5058 1.5062 1.5062	20000000000000000000000000000000000000		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2256.35 2256.35 1.2756.35 1.2756.35 3.2756.3 1.356.3 2.566.0 3.566.0 3.566.0 3.566.0	29	4	2	3	7 SPEC 37.90 4.72002 1.82632 0.2109 0.21067 5.21067	F SPEC 3.63906 6.1776 2.20593 6.4533 10.97259 5.12836
THE 1826.33 TO CO WENT OF THE STATE OF THE	610 CM 73954 FN 73954 FN 73954 FN 61057 62057 635699 64057 650599 650599 650599 650599 650599 650599 650599 650599	ALTIIL VELOCI BEGGG 523.8 3.0505 3.0505 7.407 7.407 7.501 1.5701 8E.87868	4173-3457 4173-3457 4173-3457 4173-458 41770 61771 6	4464 4467	66 C C C C C C C C C C C C C C C C C C	2005 1 1 1 2 2 4 7 0 2 2 7 4 4 7 0 1 2 3 4 2 9 2 3 7 6 1 4 3 5 3 7 6 1 4 3 5 3 7 6 1 4 3 6 6 8 9 9 3 6 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0	### ### ### ### ######################	75 PP C C C C C C C C C C C C C C C C C C	7	48 KELVIN 64 F PHRENN 3 59 53 4 5265 1 62029 2 1 5262 6 8 4311 £0 6 31311 £0	7
TIME 1859.	6.000 KM 9.037 CEC 09395 MIN 16399 ASS	ALTITU-	75 - F6 900 -183 727 - 89 837 - 38 375 - 294 739	K		CYN P FFLER	2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	1	TT MP T Q B T T	75 254.7.	SE KELVIN	FILL
INCIRUPENTS AC CE MEDS AC CE MEDS AC	622 2.2404 2.2414 3.2414 6.61339 6.61339	6	7 . 7 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .		A C C C C C C C C C C C C C C C C C C C	A A C C C C C C C C C C C C C C C C C C	1	1.335.04 1.335.04 1.335.04 1.325.04 1.325.04 2.663441	63.97 2.64801 1.17163 5.16171	* coec 3.51067 1.57137 6.848 6.8488 6.8488	4.36385 4.36385 1.97869 1.97869 8.57669	2 S S S S S S S S S S S S S S S S S S S

SURVIVAELE JUEITER PROBE TASK 3 CESCENT RUNS JP1 PCKNGPAFF JUPITER COCL/PIRES ATMCSPHEDE EALLISTIF SOEFFITTENT = 1.50°, INITIAL TIME = 1754.91 SECONDS AT 71372.COD KP RADIUS

EAL, CCEF. 0.65/0.39/1.50 CEP 18 20RC

	1893,164 CEC 31.55174 PTN .555862 PRS	V =L 0C I TY	# # # # # # # # # # # # # # # # # # #	METER/S MN/SFC	EC PC	78 P FR P FR FR	6.25.06.06.06.06.06.06.06.06.06.06.06.06.06.	A I P BAPS (+02 CPS		a.		HE I T
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44 44 44 44 44 44 44 44 44 44 44 44 44	542.35 542.35 543.53 3.3158 3.3158 1.4624 1.53787 1.7011	44 45 45 45 45 45 45 45 45 45 45 45 45 4		20	24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 mm	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A SPEC 2 5 4 7 4 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	8	4 3 CPEC 4 3 CPEC 3 CPEC 2 CPEC 2 CPEC 2 CPEC 2 CPEC 2 CPEC 2 CPEC 3 CPEC 3 CPEC 3 CPEC 3 CPEC 4 CPEC 3 CPEC 5 CPE	S S S S S S S S S S S S S S S S S S S
RACTUS 71350.CFD TIME 1924.536 32.14227 .575705	1350.CFB KM 1928.536 CFG 57.578 HV SC-14527 HV	ALTTLOS	-62.000 -203.047 41.5140 277.465	7 X X X X X X X X X X X X X X X X X X X	ڀ	PRESSURE DE CONTROL DE	7. 16.00 4. 06.00 6. 06.	BARS ATP AAPS F+O? CFS	TEMPERATURE	266.4	C1 KELVIN	HEIT
NC OF HEAD MESTATAN MES	64400 64400	30.00.00.00.00.00.00.00.00.00.00.00.00.0	46 00 00 00 00 00 00 00 00 00 00 00 00 00	3998	247.05 L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	247.07 (55157 (55157 (55156 (33351 (27356 (5.9754	# # # # # # # # # # # # # # # # # # #	10000000000000000000000000000000000000	10 40 40 1	7 SPEC 3 SPEC 1 SPEC 1 SPEC 2 3 0 7 3 SPEC 2 SPEC 2 SPEC 2 SPEC 2 SPEC 2 SPEC 2 SPEC 2 SPEC 2 SPEC 2 SPEC 3	4 CPEC 4 C4707 4 C4707 2 4707 2 13073 7 6 14693 7 6 1270 7 6 6 6 8 5	4 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
PACTUS 71357.CCO TIMF 1945.357 22.74594	1945.357 CEC 22.27 CEC 22.	1170	-65.00 -213.25 70.94 43.139 262.29	A A A A A A A A A A A A A A A A A A A		KUPF 1	5.724460 5.5154460 0.061754 5.7466465	ARS ARS 02 CFS	T C MP C P A T U P E	30.5	CD ST	E I I
INCIDURENTS NC OF HERA KEYNERA HERS/NA EFFS/NA OFGK/MERA MERS/OFFK	1EMP (57, 12 (23049 4,1756 (12958 7,7193 7,7193 64502 2,1704	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 •	2000 2000 2000 2000 2000 2000 2000 200	acret . 55769 1.7031 3.3008 1.0829 1.08299	247.67L 637.67 637.64 6.366.3 2.3864.1 2.3867.1	10000000000000000000000000000000000000	1 100 C C C C C C C C C C C C C C C C C	2 2 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 . C C L 6 L 6 L 6 L 6 L 6 L 6 L 6 L 6 L 6	2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SURVIVABLE JUSTIFE PROBE TASK * FESCENT RUNS JOH MCNOGRAFF JURITER COOL/CENSE ATMOSPHERE BARLICIT CREEFFIRMT * 4 EAC. INITIALITHE * 4268 OF REFINOS AT 24339

		04.176	1 d d d	C W								
TUS 71356+0 IME 2003-5 33-393 -5565	00 KE	ALTITUDE	UDE -68.000 -223.097 11V 77.025 44.7802 252.708	KA KFT WTTER/S MB/SFC FT/SEC	FC CC	N N D N D N D N D N D N D N D D N D D N D	8.16431 8.16431 9.062753 5.584653	84 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	TEMPERATURE	278+1 41:6	SS KELVIN 10 FAHRENHE	HE I -
NOTRUMENTS COFMEDS WIMEDS FISTAMEDS ELSTAMEDS ELSTAMEDS ELSTAMEDS FISTAMEDS FISTAMEDS FISTAMEDS	16998651 20075 100	PAESS 574.65 6.26914 3.7155 6.37199 6.37199 1.92135 7.755441	TEMP 502.90 .30752 .3.2518 .5.2518 .5.5743 .5.5747 .5.5747 .5.5747 .5.5747 .5.5747 .5.5747 .5.5747	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	135.57 1.14728 1.14728 1.8716 1.8716 2.24735 2.24735 2.24733	50000000000000000000000000000000000000	M SPEC 52.09 3.02465 .3306 1.82480 5.87481 5.87311	2	4 SPEC 4 49688 4 49688 2 7522 2 7522 3 627 1 1507
RACTUS 71351.000 TIME 2043.257 34.05429	F S S S S S S S S S S S S S S S S S S S	ALTITUE	UDE -71.000 -232.940 ITV 74.266 46.4479	KTT METHER MONEC FT/SEC	EC 00	SCURE 2 LYN P PFLEP	0.214301 9.950053 0.063753 5.384630	BARS BARS 002 CPS	TEMPERATU	PE 2083 - 9	E1 KFL LIN	HEIT
INSTRUMENTS NC OF MEDS KNYMEDS NETSCHAME	1	PRESS 585.79 •25953 3.4532 6.1422 6.1422 50393 1.9894 24.5599111	TFMF 512.81 *29653 *29753 *18.41 5.4732 *7579 *7579 *7579	4 00 ESS 4 10 6 ESS 6 37 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 2000 2000 2000 3000 3000 3000 3000	7. 2. 4. 5. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ACCEL 138.22 1.10661 . 9037 . 70134 2.14258 2.14675	A SPEC 70.11 2.19.82 4.41207 4.26.954 14.81035 14.81035 14.81035	M SPEC 53.08 2.91922 .3426 1.85098 5.66838 5.66838	7 . 3 . 5 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6	M SPEC 26.05 4.34211 6.34221 2.65128 6.43198 6.43198 7.55378
## 2094, 200 ## 2094, 364 ## 2094, 364	00 K H H C C C C C C C C C C C C C C C C C	ALTIT VFLOG	LFE -74.000 -242.782 TTV 71.658 11V 71.658	KM KFT METER/S MB/SEC FT/SEC	1	SSURE CYN P FRLER CF NO	22. 21. 21. 2. 06.92. 3. 10.63. 3. 10.63. 4. 10.63. 6. 10.63. 6. 10.63.	BARS BARS +02 CFS	TEMPERATUR	60 10 10 10 10 10 10 10 10 10 10 10 10 10	CO FATREN	IN ENHEIT
INSTRUCENTS KEZMERS KEZMERS FESSINE BERS/HERS OF GAMERS MANAGERS MANA	4.51470 4.51470 4.5576 6.54681 6.51690	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5. 14. 20. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	0.00 ESS 0.0	#CCEL 2900.77 .50013 1.50013 1.300.95 .337.99 .9786 .97135	ACCEL 262.55 257134 2.7503 2.5674 1.10966	2100EC 2100EC 2100EC 1000EC 2000EC 2000EC 100EC 100EC 100EC	ACCFL 140.96 1.06814 .9382 1.3760 2.07459	M SPEC 71.48 2.17311 1.46259 4.17367	M SPEC 54.11 2.81934 1.9547 1.9587 5.7596	3	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

SLRVIVAPIE JUPITER PROBE TASK 3 CESCENT RUNS JPL PCKNOGRAFH JUPITER GOOL/CENSF ATMOSPHERE BALLISTIC GOEFFICIENT = 1.500, INITAL TIME = 1754.91 SECONDS AT 71372.000 KM FADIUS

SEP 10 9ARS EAL. CCEF. 0.65/0.09/1.50

TIME 2126 35:4	2126.992 SEG 35.44987 MIN .590831 HPS	VELOCITY		3)			THE THE PERSON	•	6	KELVIN	ļ
		,	203	NETEO/C	,		ĸ,	¥ 6		75	469	FAHRENM	EIT
		; 1	0 7	MR/CFF	ر	00.00	111111) F C C C					
			227,006	_		FACE NO	.059211	20.43					
INSTRUMENTS	T FIND	ORFS	TENP	30 F.C.C		ACCE	7	400	3	3	•	0	2
NC OF PERS	711.00	6119.71	644.75	427.40		74. 446		1 0 N 1 7					
KF/FFAC	FF784	~	27672	, 2	18080	EE 427	r q		•		•	1000	•
MF BY LKF	E - R 2 7 3	ū	2007		1000		•	100.1	95140.7	200	,	35283	4.0500
BABC /WCAC		1007	501000	•	50 CO 60	:		•	•	•		. 2947	٠
/ A . C . C . C . C . C . C . C . C . C .	Chi de	01/4/8	19579	7	\$ 0.05 × •	3	9	.7525	1.51398	2.0266	∾้	54321	3.0637
PEDS/BAR	f. 6764	5.7215	F. 0053	4.0027	2.8F6.	2.4987	1.00	1.328	•	•		3932	•
DE CK/MEDS	4 (269	.46971	.53671	ŝ	.43812	6	10338	2.003.5	3.98438	5.2026		26643	7.8781
•	2.483	2,1290	632	1.4912	1.066	.0721	,	54.	•	•	,	1517	
1 N	52°388291	39.23742121	.86727 99	. 55463 6	9.76470	61.08556	525 84	32.7263	16.51094	12.457	10.	66520	9.4044
	•								********			*****	
RACIUS 71342.000	• CCO KM	ALTITLEE	-80	¥	PRE	SCUPE	26.4.86329	BARS	TEMPERATUR	RE 301.	946	KELVIN	
	Į		-262	KF1			6,1355	AΤR		36	735	FAHRENNE	EIT
117 217	21/10104 SEC	WFLOCITY	66.	METER/S	ي	ひをし	537	8					
36.1	BECT WIN		51.6247	ĭ	00	FELFR	972678	-					
06.			19.		4	PACE NO	056656						
INSTOUMENTS	47.40	Sign	4 n M		٠.	u	19554		3	3			2
CF WF AC	725.70		644.78			١,	,		٠,	";	_) (1
/VFA C		·	26702	75.55		2 5			3 6	,	•	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F1:00 F
MA/SP ME	4.0046	0.20		9 6		۷.	יי טיי	- 1	1.5000	10000	•	26122	2025.0
0807/WFAC			1000						•		•	1407.	200
TE EN COLOR	2007	6 10030 F F 27 8	0 1 2 1 3 4	.67676	5220	· v	. 51816	.77869	1.56618	2.05607	2	62985	3.1675
0474770	2000	0 0 0 0 0 0) P () C (-	1 I		1.254		•		.3603	.315
71.67.64	7 1 1 1 1	0 0 0 0 0	1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2		Ψ.	(/) ()	c 3 E B	3.85218	5.1174	•	37372	7,6211
DS/UFER		2,2032	1.528	5431	1.103	ij	.7730	.5163	. 2596	195		.1569	.131
EAS/PSTHT 1	1.344651	46.9103	.58455102	2846 7	_	4	51.61667	1169	17.40659	13.1298	7 10.	56355	8.8524
RACTUS 71339. CC0	CCO KH	ALTITUEE	:	X .	193	c clibe	A. A. S. S. C. A.	9400	T C MD C C A T (C C			111111111111111111111111111111111111111	
				¥	•		R. 5 PE 4 C 7				- 4	C PEDGENET	
TIME 2216.743		VFLOCITY	64.840	METER/S	נ	0 NAC	063771	. 0		n	, ,	FIRE	_
36.9457				HO/CEL		90.00	C. BEC. C. 1						
.61576	5762 HPS		٠ -	FT/SEC	4	Cr NO	.054257	L .					
-	d H ii.	PRFSS		PRESS	BCCFL	ACCEL	ل د	8008	100 A	4		COEC	
NC OF PEAC	746.91	3.E		445.35		279.09	- C	•	75.49	7.75	•) N	9 6
KW/MEBS	10771	96	.25P10	. 32262	45.434	51564	. 5445	64440	1.01857	2075		2672	
BS/KH	5.1623	25		3.3996	-	0.00	, tr			40.0	•	201	226
EDES/MEDS	.16935	21	•	2674F		47.640	E C		64020	2 4 6 6 6	,	7 4 4 7	,
PFBS/ABR	F . 2359			4.43.8.8		2722			•	6.5.4	•	1000	777
DEGK/MFBS	37625	~	_	. 52663		1,00167	. C	: :	72703	1010	• • •		
BS/FEK	2.6578	e.		1.505	_	•	0 0	٠.5			•	46.34	
•					٠			٠.	-		•	_	٢

SURVIVABLE JUFITER PROBE TASK Z EFFERT RUNS JAL PENGTPAPE JUPITER CONLICENSE ATMOSPHEME RALLISTIC COEFFICTENT = 1.50°, INITIAL TIME = 1794.91 SECONDS AT 71372.COD KM RACIUS

5570
10
o. U
5.0
٩/1.
0.0
169
Ū
FEF.
£ 01.

113	P SPEC	39.47	3.71743	.2690	3.34404	.2996	7.22364	.1384	9.63366
72 KELVIN 39 FAHRENHEIT	Dads 4	46.96	3.10810	. 3217	2.77724	.3601	6.03960	.1656	11.50088
211-172 100-439	PSPEC	56.20	2.40478	9007.	2.21422	.4516	4.84780	.2063	14.36139
TEMPEGATURE	M SPEC	7 76.93	1.87738	.5327	1.65498	5.042	3.64.10	.2741	18.56849 1
BATE BARE BARE	ACCE	151.8	. 54351	1.050	. P 232	1.214	1.8333	. 54.5	37.6352
30.572551 BARS 30.17245 ATM 06.8787 BARS 4.584198*02 CFS	ACCEL	226.80	.63008	1.5871	5478F	1.8253	1.22436	.8168	56.30127
PRESSURE 3 DYN P COPPLER		283.00							
	BUCFL	373,15	.44151	2.2649	. 3 P 3 1 C	2.6103	4978A.	1.1656	ec.30026
1 KFT 6 MFTFR/SF 18 MB/SEC 15 CT/SEC		451.61							2.29878
	TEMP	564.01	•25255	SONO.	.21869	4.5727	94064	2.0377	140.2974411
ALTITUE VELOUTTY	PRESS	644.29	.22102	4.5744	.19132	5.2269	04624.	. 3284	30646
71337 . 000 KM 2248 . 029 SFC 37 . 46715 WIN . 524452 HRS	TEMP	751.34	1,9548	F. 2776	.16396	f. r.91	. 46820	2,7159	96,9618218
RACIUS 71337.000 KM TIME 2248.029 SFC 37.46715 MIN .524622 HRS	INSTRUPENTS	NC OF MEAS	KP/NED?	HF BS /KP	BBRS/MFBS	HE PS/BAC	CF GK / MF & S	ME AS/ADFOK	MEASTRT 196.96182160.

ACCITIONAL RIT RETES REQUIRED TO PEAD OUT ENTRY CATA CACE 3.725 TAIRE 5.55C

TITLE=5 GHSURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
XNOTE=5 UH BAL. COEF. 0.65/0.70/1.50 SEP 30 BARS

43 = 0.70,

IATM=1,

RSTART=59900,

RSTART=59

RSTART=0,

RSTART=0,

RSTORD=7850,

RSTORD=7850,

FREU=2.45+09,

EZA=25.,

XNAME=6H TEMP,5H PRESS,6H ACCEL,6H ACCEL,6H

ACCEL,6H ACCEL,6H SPEC,6HN SP

		M SPEC 50.000	M SPEC +00.000	M SPEC 0.
		SPEC 0 50 0 €	0.00 t 0.00 t	M SPEC
		M SPEC +0.000	M SPEC 400•000	M SPEC 0.
sniov		M SPEC 30.000	3 SPEC 400+	M SPEC
SECONDS AT 59900.000 KH RADIUS		ACCEL 15.006	ACCEL 30.000	ACCEL 0.
S AT 5990(ACCEL 13.000	ACCEL 30.000	ACCEL 0.
0. SECONE		ACCEL 8.000	A3 CEL 30.000	A3GEL 0.
11	BARS	ACCEL 7.000	ACCEL 30.000	ACCEL 0.
DESCENT RU TMOSPHERE INITIAL T	SEP 30 BARS	PRESS 5.000	PRESS 10.000	PRESS 0.
185 TASK 4 1 40MINAL A = .700,	11.50	N) S.) TEMP 4 • 000	TEMP 10.600	MENTS TEMP 0.
ATURN PRO APH SATURN EFFICIENT	0.65/0.70	VALS (SE30 PRESS 3.500	PLE PRESS 10.000	US MEASURE Press 0.
SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS JP. HONOGRAPH SATURN 40MINAL ATHOSPHERE BALLISTIC COEFFICIENT = .700, INITIAL TIME	BAL. COEF. 0.65/0.70/1.50	SAMP_E INTERVALS (SECON)S. TEMP PRESS 3.000 3.500 +	BITS PER SAMPLE TEMP Pi 10.000 10	NO OF PREVIDUS MEASUREHENTS TEMP PRESS TEMP 1.0.0.

REQUIRED BIT RATE = 61.7262 BITS/SECOND

ENTRY DATA IN STORAGE = 7850.0 BITS

SECONDS AT 59900.000 KM RADIUS : SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN VOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

SEP 30 BARS

RADIJS 599	59900.000 KM	ALTITUDE	100	.	ž	PRESSURE		BARS	TEMPERATUR	. 77 s		
TIME 0	G. SEC.	VELOC	328.084 ITY 365.969 .6592 1200.684	KFI METER/ M3/SEC FT/SEC	SEC	DYN P OPP_ER ACH NO	.011521 2.653441E .576276	ATM BARS +03 CPS		-321.0	070 FAHRENHEIT	HE 11
INSTRUMENTS NO 0° MEAS NEAS/KH MEAS/KH MEAS/BAR MEAS/BAR MEAS/BAR MEAS/BAR MEAS/BAR	1.08667 1.08667 9.9201 5.00.8449 9.8478203	PRESS 1.00 1.26590 0.7900 0.0233 429.5737 0. R	16 C C C C C C C C C C C C C C C C C C C	PRESS 1.79945 .5557 .00335 98.4959 0. R	AGCEL 1.00 2.50273 .3996 .00472 211.7939 0.3	ACCEL 1.00 2.85036 0.05518 0.7508 0.7574 0.737	ACCEL 1.00 3.54073 .2024 .00681 146.7920 0. R	ACCEL 1.00 5.22747 .1913 96.2769 0. R	M SPEC 9.99212 9.99212 45.02178 45.9952 0.965	12.94934 .02994 .02994 33.3998 002994 34.4998	15.75.28 15.75.28 16.35.38 16.35.38 16.35.38 17.094.25 17.094.25	M SPEC 1.00 18.41690 .0543 .04760 21.0077 0. R
TINE 14.317	16.317 SEC 23861 MIN 003977 HRS	ALTITUDE VELOCITY	06 95.000 311.680 TY 333.555 1094.341	KY KFT HETER/ HB/SEC FI/SEC	SEC .	ZESSJRE DYN P DOPPLER MACH NO	.058380 BA .057617 AT .011521 BA 2.418428E+C	BARS ATH BARS +03 CPS	TEMPERATURE	-321.	000 KELVIN 070 FAHRENHEIT	HEIT
NST & MACHE AS & MACHE	27.16 27.16 456.7	PRESS 5.09 1.15497 .00256 391.6916 0.83331684	TEMP 4.58 1.31796 .7587 .00293 341.5063 0. R	PAESS 3.86 1.64247 .5088 .00367 272.3705 0. R	ACCE. 3.05 2.28569 .4375 .00517 193.3689 0.3	ACCEL 2.604.4 0.3840 163.6850 163.6856 0.3840	ACCEL 2.43 3.23634 .3090 .00746 134.1364 0.32092	ACCEL 4.78438 6.011396	M SPEC 1.46 9.17814 0.1090 0.02371 42.1739 0.	M SPEC 11.91995 .0039 .03251 30.7573 0. 25565	14.52882 16.52882 0.041176 23.9449 0.041176 1.85316	M SPEC 17.01705 01705 05146 19.4321 0.56213
TIME 30.024 .50041	30.024 SEC 30.024 SEC 50041 MIN 008340 HRS	ALTIT UDE VELOCITY	DE 90.00 295.27 17 304.00 997.40	0 KM 6 KFT 6 METER/ 9 MB/SEC 1 FT/SEC	EC	PRESSURE DYN P DOPP.ER HACH NO	07 02 92 E 06 93 73 F 01 15 21 E 2 2 0 4 19 6 E	BARS ATH BARS E+03 CPS	TEMPERATURE	-321.	000 KELVIN 070 FAHRENHEIT	HE IT
INSTRUMENTS NO OF MEAS KM/MEAS/KM BARS/NEAS MEAS/BAR MEAS/BAR MEAS/DEGK MEAS/PSCHT	S TEMP 11.01 .90439 1.1057 .00240 416.4823 0.	PRESS 9.55 1.05365 .05361 .06281 355.4850 0.	TEMP 8.51 1.20250 .8316 .00321 311.4883 2 0.8	PRESS 7.00 1.49898 .6671 .60402 46.4958 0.4556	ACCE. 5.29 2.08708 .4791 .00567 176.5125 0.	ACCEL 4.675 2.37874 .4204 .00649 154.0214 0.	ACCEL 4.00 2.95736 .3381 .00816 122.5394 0.10438	ACCEL 4.377200 0.2200 0.01241 0.0500	8.6.25.00 0.6.25.00 0.1167 3.02583 0.02583	10.96416 10.96416 0.0912 0.03534 28.2997 0. R	13.34863 13.34863 .6747 .04529 22.0767 0.058	H SPEC 1.50 15.70855 .0637 .05570 17.9540 0. R

SECONDS AT 59900.000 KM RADIUS . SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN YOMINAL ATMCSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

SEP 30 BARS

RADIJS 59885.000	9885.000 KM	ALTITUDE	985	20 K4	A.	PRESSJRE	.084636	BAKS	TEMPERATUR	RE 77.000	00 KELVIN 70 FAHRENHEIT	HE I I
TI4E 47	47.259 SEC .78765 MIN .013128 HRS	VELOSITY			SEC	DYN P DOPPLER JACH NO	.011521 2.008911E .436296	BARS E+03 CPS				
INSTRUMENTS NO OF MEAS KH/MEAS MEAS/KH BARS/MEAS MEAS/BAR MEAS/DEGA MEAS/PSGHT	TEMP 16.75 .82487 1.2123 .00253 379.7389 0. R	PRESS 14.50 • 96113 1.0404 0.0308 325.0747 0.28.01017	TEMP 12.81 . 09704 . 9115 . 0035 2 . 0035 2 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .	PRESS 10.45 1.35784 .7311 .00441 226.6837 0.	ACCE. 7.75 1.90540 .5248 .00621 161.0969 0. 3	ACCEL 6.31 2.17213 . 4504 . 10711 140.6038 0. R	ACCEL 5.73 2.70180 .3701 .01894 111.9177 0. R	ACCEL +.15 +.00349 .2498 .01357 73.6859 0. R	H SPEC 2.538 7.72975 .1294 .02815 35.5205 0.48243	H SPEC 2.13 10.07790 .0992 .038+4 26.0177 0. R	M SPEC 1.95 12.32785 .04917 20.3386 0. R 2.16337	M SPEC 14.46746 .0690 .06035 16.5705 0.85783
RADIJS 39880 TI*E 65	9880.000 KM 65.169 SEC 1.10282 MIN .018380 HRS	ALTITUDE VELOSITY	80.0 262.4 252.5 .95	00 KM 67 KFT 22 HETER/ 65 HB/SEC 83 FT/SEC	ے ا ا	PRESSURE DYN P DOPPLER MACH NO	.101911 B .100579 A .011525 H 1.830898E+	BAKS ATE BARS +03 GPS	TEMPERATURE	-321.	GOO KELVIN O70 FAHRENHË	HE1T
NSTRUMENT O O = MEAS M/HE AS M/HE AS EAS/ KH EAS/ BAR EAS/ BAR EAS/ DEGK EAS/ DEGK EAS/ DEGK	TEMP 23.05 .75228 1.3293 346.2091 0.85.78030	PRESS 19.91 . 87665 1.1407 . 00337 295.4049 2 0. R	17.54 17.54 100.73 100386 9.0524	PAESS 14.23 1.24803 .8013 .00484 206.7606 21.55739	AGCE. 10.45 1.73925 0.0680 147.0034 0.7592	ACGEL 9.27 1.98319 .5042 00779 123.3313 0. R	ACCEL 7.62 2.46778 .00979 102.1936 0. R	ACCEL 3.65050 .2732 .01485 67.3559 0.35300	M SPEC 3.21 7.08782 0.1411 0.3070 0.32.5690 0.379723	M SPEC 2.65 9.25715 .1080 .3.9020 0.3.90728	M SPEC 2.32 11.34244 .0832 .05342 18.7195 0.37271	M SPEC 2.10 2.10 2.10 0.0744 0.0597 15.16597 15.16584 1.7959 2.00333
RADIJS 59873 TI4E 81	9875.000 KM 85.918 SEC 1.44864 MIN .024144 HRS	ALTITUDE VELOCITY	75.000 246.063 230.142 1.0497 755.058	00 K4 63 KFT 42 METER/S 97 M3/SEC 58 FT/SEC	SEC TA	DY4 POPPLER	.122716 .121111 .011526 1.668634E	BARS ATM BARS +03 CPS	TEMPERATU	URE 77.0 -321.0	070 KELVIN 070 FAHREN	HEIT
INSTRUMENTS NO OF MEAS KM/MEAS NEAS/KM BARS/MEAS MEAS/BAR DECK/MEAS MEAS/DECK/MEAS	TEMP 29.97 .68603 1.457 .00317 315.6152 0. R	PRESS 25.83 1.2507 1.2507 0.0370 0. R 33.66038 2	TEMP 22.73 22.73 91278 1.0956 0.2095 6.2095	PRESS 10.3858 1.13858 0.0530 188.5672 0.	ACCE. 13.42 1.58735 6300 00745 134.1224 0.	ACCEL 11.96 1.81034 .5524 .00854 117.1110 0.	ACGEL 9.69 2.25357 .4437 .01072 93.2951 0. R	ACCEL 0.79 3.34594 .2989 .01625 61.5514 0. R	M SPEC 3.90 6.49596 .1539 .03350 29.8466 0.	M SPEC 3.17 8.53151 .1172 .04577 21.8507 .65706 .1.5219	M SPEC 2.74 2.74 10.54232 .05459 17.4825 2.74923 2.74923 2.56359	M SPEC 2.45 12.51270 .0799 .07166 13.9556 4.79935

SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS JP. Monograph Saturn Vominal atmosphere

BALLISTIC CJEFFICIENT = .700, INITIAL TING = 0. SECONDS AT \$9900.000 KM RADIUS	INITIAL TIME =	•	SECONDS AT \$9900.000 KH RADIUS
BAL. COEF. 0.55/0.70/1.50	SEP 30 BARS		

RADIJS 39870 TIME 133	9870.000 KM 103.685 SEC 1.82809 MIN .030468 HRS	ALTITUDĒ VELOCITV	70.000 229.659 TY 209.749 1.1520	10 0 K4 559 KFT 42 METER/S 20 MB/SEC 30 FT/SEC) EC	DYA P DOPPLER MACH NO	.147772 .145840 .011526 1.5207276	BARS ATH BARS E+03 CPS	Temperature	RE 77.0 -321.0	130 KELVIN 170 FAHRENHEIT	HEIT
INSTRUMENTS NO OF HEAS KM/HEAS HEAS/KH BARS/HEAS HEAS/BARA DEGK/HEAS HEAS/DEGK HEAS/PSH	TEMP 37.56 .6258 1.5985 .00348 287.7066 0. R	PRESS 32.34 1.3715 1.3715 243.3665 0.3665 36.30393	TEMP 28.42 . 83250 1.2012 . 00464 215.3620 0. R	PRESS 22.94 1.03862 .9628 171.9565 0. R	AGCEL 16.67 1.44852 .6904 .00817 122.3529 0. 3	ACCEL 14.71 1.65231 . 6032 . 00936 105.8530 0. R	ACCEL 11.97 2.05758 .4860 .01174 85.1550 0. R	ACCEL 8.31 3.06003 .3268 .01780 56.1877 .16651 6.0057	M SPEC 6.01630 6.01630 7.03659 3.24239 3.24239 4.520084	N SPEC 3.74 1.93579 1.260 0.04949 5.23955 1.1909 3.46182	M SPEC 3.19 9.81799 .1019 .06266 15.9526 7.19791 2.82791	M SPEC 2.83 11.66569 .0857 .07617 13.1283 9.12037 .1096
RADIJS 59865 TIME 13+ 2.2 .03	5.000 KM 24.483 SEC 24.139 MIN 37.356 HRS	ALTITUDE Velocity	05 65.000 213.255 IY 193.946 1.2457 636.306	100 K4 155 K*T 146 METER/S 157 M3/SEC 106 FT/SEC	n S	RESSJRE DYN P DOPPLER MACH NO	.177757 .175433 .011533 1.4061996	BARS ATH BARS E+03 CPS	TEMPERATURE	-317	.137 FAMRENHEIT	HE I T
NSTAUMENT O OF MEAS MANEAS MANEAS MASSAMEAS MEAS MEAS MEAS MEAS MEAS MEAS MEAS MEAS MEAS MEAS MEAS MEAS	TEMP 45.83 1.7244 1.7244 0.0375 66.6141 1.6574 47.89082	PRESS 39.42 1.67619 1.4789 223.3993 7.0355 1.4214	TEMP 34.62 .77236 1.2947 .00501 139.7385 1.2444 35.00264	PRESS 27.90 .954.0 1.0369 .00627 159.6137 1.00342 .9966 28.85959	ACCE. 20.21 1.34722 0.0679 113.7579 113.7579 1.40173 20.71726	44	ACCEL 14.45 1.91841 01260 79.36603 1.99603 14.60253	ACCEL 9.97 2.86244 .01994 52.65826 2.97828 9.84579	N SPEC • • 5 3 8 4 4 • • 1 7 7 4 • 5 3 8 6 5 • 5 8 8 6 5 • 6 6 6 5 • 6 6 0 2	7.44574 0.1343 0.1343 0.1343 0.05204 7.74702 3.89431	N SPEC 3.69 9.22120 0.1084 15.2144 15.29444 3.17622	M SPEC 3.24 10.96695 .0912 .07968 12.54968 13.41070 .0876 2.69999
RADIJS 39860 TIME 160	. 995 SEC 4325 MIN 4721 HRS	ALTITUDE VELOSITY	05 60.000 196.856 IY 143.453 1.3182 601.879	00 K4 50 K=T 53 METER/ 82 MB/SE0 79 FT/SEC	SEC P.	LESSJRE DYN P 10PP. ER 1ACH NO	.211762 .208993 .011533 1.3301164	BARS AIM BARS +03 CPS		84. -307.	387 KELVIN 773 FAHRENHEIT	
INSTRUMENTS NO OF MEAS KM/ME AS MEAS/KM BARS/MEAS BARS/MEAS DEGK/MEAS MEAS/ BGSK	TEMP 54.57 •54.873 •54.873 •00.397 •57.034 •57.034	PRESS 47.00 .63960 1.5628 .00463 215.0637 .56577	TEMP 41.25 .73093 1.3681 .00529 188.9525 .76051 1.3149	PRESS 33.20 .91278 1.0956 .00662 151.0211 1.0530	ACCEL 24.00 1.27542 .7841 .00929 107.6603 1.32702	ACCEL 21.12 1.45622 .01063 94.1104 1.51514	ACCEL 17.10 1.81679 .5504 .01331 75.1412 1.89030	ACCEL 11.33 2.71235 .3687 .02006 49.8511 2.8210	A SPEC 5.351.37 5.351.38 6.140.70 24.5761 5.36770	5.02 7.07311 .1414 .05478 18.2552 7.35930	M SPEC 4.22 8.76742 .1141 .06911 14.4694 9.12217	M SPEC 3.68 10.43527 .0956 .09369 11.9488

SECONDS AT 59900.000 KM RADIUS SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN VOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

.

SEP 30 BARS

RADIJS 59855.000 KM TIME 188.977 SEC 3.14961 MIN .052494 HRS	855.000 KM 188.977 SEC 3.14961 MIN	ALTITUDE VELOCITY	!	55.000 KM 130.446 KFT 174.104 METEK/ 1.3893 M9/SEC 571.207 FT/SEC	SEC	PRESSURE DY P DOPPLER MACH NO	.249550 BAR .246386 ATh .011533 BAK 1.262334E+65	BARS ATN BAKS +63 CPS	TEMPERATURE	89.5 -298.4	90 KELVIN 09 FAHRENHEIT	Æ I T
INSTRUMENTS NO OF MEAS NM/MEAS NM/MEAS HEAS/NM MEAS/NMEAS MEAS/NMEAS MEAS/NEAS MEAS/NEAS MEAS/NEAS	TEMP 63.99 .52093 1.9196 .00418 239.3419 .5420 1.8450	PRESS 54.99 .50749 1.6461 .00488 205.0596 .53207 1.5821	TEMP 48.24 .69397 1.4410 .00558 179.3479 .72205 1.3849	PAESS 38.80 38.80 11.1538 143.3518 9143.3518 11.1089	ACCE. 28.00 1.21129 .8255 .00978 102.2140 1.26030 .7935 26.01455	ACCEL 24.52 1.38313 .7230 .01119 69.3548 1.43910 .69.9	ACCEL 19.90 1.72595 .5794 .01401 71.3618 1.79579 18.31095	ACCEL 13.60 2.57797 .3879 .02111 47.3676 2.68228 2.68228 12.31858	M SPEC 7.30 5.09285 .1964 .0427 23.3804 5.29892 .1887 6.32376	M SPEC 5.726+0 14.84 05751 17.3890 6.96907 4.82390	A SPEC 4.78 8.35550 .1197 .07249 13.7956 8.61164 .1161	H SPEC 4.15 9.95152 .1005 .00771 11.4016 10.2377 3.32135
RADIJS 39350 TIME 218	218.417 SED 3.54029 MIN 050671 HRS	ALTITUDE VELOSITY	165 165 165 165 165	50.000 KM 164.042 KT 165.719 METEK/S 1.4598 MB/SEC 543.697 FT/SEC	SEC	DYN P DOPPLER MACH NO	.291602 3 .287789 A .011533 B 1.201539E+	BARS BARS H 03 CPS	TEMPERATURE	283.045	92 KELVIN 45 FAHRENHEIT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NSTRUMENT O OF MEAS MINEAS EASINEAS EASINEAS EASINEAS EASINEAS EASINEAS EASINEAS EASINEAS EASINEAS EASINEAS EASINEAS		PRESS 63.40 . 57839 1.7289 . 00512 195.1177 1.6893 57.41274	TENP 55.60 . 66076 1.5134 . 00536 17 0.7115 1.4803 50.27824	PAESS +4.668 +4.668 - 82529 1.2117 1.2117 1.35.494 - 84.244 - 84.244 1.1870 + 40.29983	ACCE 32.20 1.15357 8669 91029 97.4145 1.17543 8507 28.87429	ACCEL 28.30 1.31733 1.7591 67.01175 87.34152 1.34152 27.30692	ACCEL 22.84 1.64408 .01472 67.9567 1.67310 20.31224	ACCEL 15.56 2.45654 .02216 .02216 .02216 .02216 .02216 .02216 .02216 .02216 .02216 .02216	H SPEC 4.85776 2.2059 22.2974 4.93336 6.99005	M SPEC 6.440 6.45004 .1555 .00026 16.5942 6.52842 5.32318	F.94487 7.94487 1.253 0.7591 13.1734 8.10173 4.3226	M SPEC 4.64 9.51136 11051 0.09178 10.8954 9.65440 3.65440
RADIJS 59845 TIME 249	. 000 KM . 316 SE 5527 MI 9255 HR	ALTITUDE VELOCITY	1	45.000 KM 145.638 K [±] T 158.048 METER/ 1.5327 M3/SEC 118.529 FT/SEC	SEC	PRESSURE DYN P DOPPLER MACH NO	.337827 BARS .333409 ATM .011546 BARS 1.145918E+03 G	BARS ATH BARS E+03 CPS	TEMPERATURE	R 99.870	70 KELVIN 05 FAHRENHEIT	£IT
INSTRUMENTS NO OF MEAS KH/MEAS MEAS/KH BARS/MEAS MEAS/MEAS MEAS/DEGK MEAS/DEGK MEAS/DEGK MEAS/DEGK	TEMP 84.11 -47311 2.1137 201450 217.2239 -47995 2.0835 73.88296	PRESS 72.23 72.23 12.216 1.8124 185.1185 185.15 185	15.73 63.13 63.03 1.53.03 1.52.798 6394 1.563 55.4993	PRESS 50.86 57.8737 4 1.2700 4 130.10768 0 130.10768 1.2519 44.45428	AGCE 36.62 1.10074 .9085 .01077 92.8246 1.11669 31.85603	ACCEL 32.16 1.25708 .7955 .01232 81.12753 1.2753 27.91538	ACCEL 25.93 1.56911 .6373 .01542 64.659185 1.59185 22.39953	ACCEL 17.62 2.34537 .4264 .02328 43.0232 2.37936 .4203 15.04393	M SPEC 9.31 4.54258 .2154 .04694 21.34694 4.70986 .2123	M SPEC 7.23 6.14905 .1626 .06303 15.8660 6.23816 .1603	M SPEC 5.99 7.63663 .1309 .07934 12.6046 7.74730 .1291	M SPEC 5.16 9.10620 .1098 .09586 10.4916 9.23817 .1062

SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MJNOGRAPH SATURN VOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

SECONDS AT 59900.000 KM RADIUS •

SEP 30 BARS

RADIJS 5984	59840.000 KM	ALTITUDE	UDE +0.000	X 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	PRE	PRESSJRE	388545	BARS	TEMPERATURE	104.	942 KELVIN 774 FAUDENHETT	11307
TI4E 28	281.678 SEC 4.59463 MIN .078244 HRS	C VELOCITY N S		METER/ MB/SEC FT/SEC	SEC DO	DOPPLER MACH NO	.011545 BARS 1.095405E+03 (BARS BARS C+03 CPS		• 0.13		
NSTAUMENT O OF MEAS M/NEAS EAS/ KM EAS/ BAR EAS/ BAR EAS/ BAR EAS/ BAR EAS/ BAR	N 00	P PRESS 9 41.48 - 52755 7 1.4955 2 00562 0 177.9008 0 5352 1 1.8665 2 69.6212	TEMP 71.42 60272 1.6593 1.6593 1.556114 61146 1.6354	PRESS 57.34 1.75291 1.75291 4.4064 4.4064 1.3092 1.3092 1.3092 4.83572	ACCE. 41.22 41.22 9499 01127 86.7438 1.06795 34.97854	ACCEL 36.21 1.20229 . 6317 . 01239 77.5994 1.213931 . 01393	ACCEL 29.17 1.50091 .6663 0.1613 61.9974 1.52266 24.58537	ACCEL 19.78 2.24411 0.4456 11.1956 2.27653 2.47653 16.50129	M SPEC 10.39 4.14605 0.2249 20.3973 4.51048 6.1217 8.41537	A SPEC 8.0498 1.06579 1.5.1999 5.97737 6.39279	M SPEC 6.63 7.32119 .1366 .12.0826 7.42729 7.42729 5.17856	A SPEC 8.7 34.69 0.1145 0.09994 10.0099 0.66099 4.36699 4.36699
RADIJS 59635 TIME 315 5.2	- 495 SE 5826 MI 7638 HR	ALTITUDE C VELOCITY N	UDE 35.000 114.829 ITY 144.728 4.74.828	KA K=T METER/ NB/SEC FT/SEC		PRESSURE DYN P DOPPLER MACH NO	.443945 BAR .438140 ATM .011546 BAR 1.049342E+03	BARS ATK BARS +03 CPS	TEMPERATURE	RE 110.014 -261.644	14 KELVIN 14 FAHRENHEIT	11 13 14
INSTAUMENTS NO OF MEAS NAMEAS HEAS/ KH HEAS/ HEAS HEAS/ HEAS HEAS/ DEGK HEAS/ DEGK HEAS/ DEGK	2.3074 .05339 2.3074 .00503 198.8570 .43967 2.2744 88.78064	P PRESS 7 91.14 9 .50547 4 1.9783 3 .00567 3 .00567 7 .51280 4 76.14580	79.87 .5775. 1.7716 .00671 149.0520 1.7068 1.7068 65.66964 53	64.10 64.10 72145 1.3861 1.0869 9.1691 1.3663 4.0297	ACCE. 46.07 1.00882 .9913 .01175 85.0175 1.02344	ACCEL 1.15225 0.0679 7.01345 7.01345 1.16035 3.0270	ACCEL 1.43860 0.6951 0.6951 1.45944 1.45944 2.65652 2.66552	ACCEL 22.03 2.15152 0.4648 39.4633 2.18271 16.0239	H SPEC 11.52 4.26590 .2344 .05111 19.5657 4.32773 .2311 9.17701	A SPEC 8.89 5.65598 .1768 .06855 14.5679 5.73796 .1743	M SPEC 7.03120 03120 01422 14.6019 7.13312 5.63599	M SPEC 6.26 8.39214 11403 9.61377 8.51377 4.74997
ADIJS 39	763	ALTIT	UDE 30.000 96.425 ITT 138.909 1.7447 455.740	K4 KFT METER/S MB/SEC FT/SEC	SEC DOI	PRESSURE DYN P DOPPLER MACH NO	.504216 BARS .497623 ATH .011546 BARS 1.007156E+03 C	BARS ATH BARS +03 CPS	TENPERATURE	115.	007 KELVIN 513 FAHRENHEIT	HE I T
INSTRUMENTS NO 07 MGAS KM/MEAS HEAS/KH BARS/NEAS HEAS/BAR NEAS/BAR NEAS/DEGK MEAS/DEGK	117.92 .41603 .41603 2.4037 .00524 190.8277 2.3693 96.71758	PRESS 2 101.22 3 .40524 7 2.0608 4 .00612 7 163.5209 6 .49327 8 2.0314 6 62.94889	TEMP 68.69 .55440 1.6037 .00699 143.0408 114 .56244 1.7780	PRESS 71.15 .69262 1.4436 .00874 4.3688 .70266 1.4232	ACCEL 51.11 •96.60 1.0324 •01225 61.6009 •98264 1.0177	ACCEL 44.65 1.10636 .9039 71.3611 1.1221 1.221 1.6919 36.47912	ACCEL 36.08 1.38144 .7239 .01754 57.0254 1.40146 .47136 29.25028	ACCEL 24.38 2.06653 .4839 .02638 37.9117 2.09117 2.07749	M SPEC 12.69 4.10017 .2439 .05319 18.8003 4.15960	M SPEC 9.77 5.43659 .1839 .07131 14.0239 5.51741 7.56004	A SPEC 6.76373 6.76373 11.15962 6.86175 6.1457	A SPEC 6 . 0 6 6 5 5 5 6 6 5 5 6 6 5 5 6 6 5 5 6 6 5 5 6 6 5 5 6 6 5 6 6 5 6 6 5 6

SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN NOMINAL ATMOSPHERE
BALLISTIC CZEFFICIENT = .700, INITIAL TIME =

SECONDS AT 59900.040 KM RADIUS

SEP 30 BARS

RADIJS 59825	. 000 KM	ALTITUDE	25.		_	PRESSJRE	569545	BARS	TEMPERATURE	3E 120-159	9 KELVIN	11
TIME 387, 6.45	.475 SEC 15792 HIN 17632 HRS	VELOCITY	133 133 438	METER/ MB/SEC FT/SEC	SEC.	DOPPLER MACH NO	.011546 .011546 9.663758E	a (10) +			_	•
INSTRUMENTS NO OF MEAS KM/MEAS MEAS/KM BARS/MEAS MEAS/SAR BEAS/BAR MEAS/BAR MEAS/BAR MEAS/MEAS MEAS/MEAS	130.16 .40007 2.4996 .90545 183.4425 2.4639 104.97805	PRESS 111.71 .4662 2.1431 .0036 157.190 13 .47339 2.1124 90.02930 78	TEMP 97.87 97.87 1.8757 00727 37.5111 1.8489 8.81772	PRESS 78.50 .65610 1.5013 .00909 109.9522 .67575 1.4798	ACCE. 56.35 1.0734 0.1273 78.4565 79.4566 1.0581 45.18273	ACCEL 49.43 1.06413 0.94397 0.1437 68.6143 1.07933 39.57686	ACCEL 39.75 1.32882 .7525 .01824 54.8352 1.34808 31.72851	ACCEL 26.63 1.98823 .5030 .02742 36.4655 2.017055 2.017055	M SPEC 13.92 3.94720 .2533 .05527 18.0937 4.00440 .2497	M SPEC 10.69 5.23768 .1909 .07406 13.5023 5.31359 8.18021	H SPEC 8-75 6-51026 1535 09304 10.7442 6-61070 1113 6-60901	M SPEC 7.46 7.78336 11220 8.9127 7.89616 5.56123
ADIJS 59820 TIME 425 7.0	627 9378 8230	ALTITUDE VELOCITY	20. 65. 128. 1.8	KM KFT METER/ M9/SEC FT/SEC	SEC P	PRESSURE DYN P JOPP.ER MACH NO	.640118 .631747 .011546 9.325945E	BARS ATH BARS +02 CPS	TEMPERATURE	125	232 KELVIN 253 FAHRENHEIT	HEIT
INSTRUMENTS NO OF MEAS MEAS/KM MEAS/KM BARS/MEAS MEAS/BAR DEGK/MEAS MEAS/DEGK MEAS/DEGK	142.88 2.5953 2.5952 2.0056 176.656 176.89091 2.5581	PRESS 122.61 . 44944 2.2250 0.00651 151.3576 . 45596 2.1932 97.38590	TEMP 107-41 107-41 1.9473 0.0755 132-4064 1-9195 85.25475	PAESS 85.13 .65161 1.5586 .00945 105.8747 .65091 1.5363 68.27110	ACCEL 61.80 .089741 1.11143 .01324 75.5559 .91041 1.0984 48.86110	ACCEL 54.20 1.02513 .02513 .01513 65.01714 1.03938 42.79542	ACCEL 43.56 1.28021 .7811 .0189 52.8194 1.29870 34.30339	ACCEL 29.38 1.91285 .05220 35.12847 1.94362 22.98036	M SPEC 15.19 3.86555 .05734 17.4392 3.86070 11.65600	M SPEC 11.64 5.05136 0.7981 13.0190 5.11718 6.82423	6.28622 6.28622 10.48622 10.3674 6.34397 7.12470	A SPEC 8.09 7.51060 11331 11331 8.6000 7.56034 5.99114
DIJS 59815 TIME 465 7.7	.000 KM .213 SE 5355 MI 9226 HR	4 >	15. 49. 124. 1.9	METER/ MB/SEC FT/SEC	SEC D	ESSJRE DYN P OPP.ER ACH NO	.716120 .706755 .011552 8.994518E	BARS ATM BARS + 02 GPS	TEMPERATURE	RE 130.298 -225.134	38 KELVIN 54 FAHRENHEIT	HEIT
INSTRUMENTS NO OF HEAS NO OF HEAS MEAS/KH BARS/HEAS MEAS/HEAS MEAS/BAR DEGK/HEAS HEAS/DEGK HEAS/DEGK	TEMP 156.07 .37157 2.6906 .00567 170.3076 .36924 2.7083 122.459641	PRESS 133.92 2.3352 2.3367 145.90685 145.90686 2.3219	TEMP 117.30 .49534 2.0188 .00783 127.6733 2.0321 91.92847	PZESS 94.04 .61890 1.5158 .00979 102.0931 .61485 73.60972	ACCE. 67.45 .86569 1.1551 .01373 72.8586 .86003 1.1627	ACCEL 59.15 . 98832 1.0112 . 01559 63.7229 . 98246 1.0179	ACCEL 47.52 1.23507 .8097 .01963 50.9330 1.22700 36.97184	ACCEL 32.01 1.84857 .5410 3.02952 33.8800 1.83648 .54455	M SPEC 16.51 3.67338 .2722 .05942 16.8284 3.64937 .2740	M SPEC 12.63 4.87727 .2650 12.5663 4.84539 .2064 9.49021	M SPEC 10.30 0.07138 0.09990 10.0095 0.03170 7.65715	7.25601 7.25601 1.1376 1.12040 8.3054 7.20858

SECONDS AT 59900.000 KM RADIUS ; SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN NOMINAL ATMOSPHERE
BALLESTIC CDEFFECIENT = .700, INITIAL TIME =

SEP 30 BARS BAL. CUEF. 0.65/0.70/1.50

KAULJS 29610.000	. 000 KM	ALTITUDE	10.000	× × ×	P	PRESSURE	.797771 . 787779	BARS	TEMPERATURE	IRE 135.265 -216.192	55 KELVIN 37 FAHRENHF	HF 1.1
TIME 505.237 0.43729 .140621	1729 MIN 1621 HRS	VELOCITY	2.0264 2.0260 392.927	METER/ MB/SE3 FT/SEC	SEC DO	DYN P DOPPLER MACH NO		HARS +02 CPS				
UMENT MEAS AS AS KH MEAS MEAS MEAS PSCHT	TEMP .35885 2.7867 .00608 4.3756 2.8050	PRESS 145.64 1 2.41857 2 2.3891 2 40710 3 41583 2 2.4048 2 142.67792 98.2	TEMP 27.56 47826 47826 00811 62319 47514 47514 61004 7	PAESS 102.25 .59758 1.5734 .01015 98.3446 1.58346 9.11499	ACCE. 73.35 .83593 1.1963 70.3306 .83047 1.2041 56.60625	ACCEL 64.026 1.0472 01026 61.5138 0.94872 1.05472	ACCEL 51.65 1.19272 .8384 .9.1703 1.18493 .6493	ACCEL 34.75 1.78545 .5601 32.7125 1.77378 2.59398	M SPEC 17.87 3.54950 0.2817 16.2818 3.52630 3.52630 13.46228	M SPEC 13.66 4.71410 .2121 .08236 12.1424 4.66329 .2135	A SPEC 5.86984 .10336 9.10336 9.65747 9.85748 8.20805	M SPEC 9.44 7.01698 .12453 8.0299 6.97112 6.89395
RADIJS 59805.000 TIME 543.704 9.14507	.000 KM .784 SEC 4507 MIN 2418 HRS	ALTITUDE VELOCITY	5.000 16.404 115.768 2.0953 379.817	KA KT METER/ MB/SEC FT/SEC	SEC DO	PAESSJRE DYN P DOPPER AACH NO	.85294 .873717 .011552 8.393737E	BARS ATH BARS E+ 02 CPS	TEMPERATURE	4.2	33 KELVIN 51 FAHRENHE	HE IT
A S S H	1683-99 -3469 2-8852 -0063 58-853 58-853 -3446 1-1314	PRESS 57.77 40464 •4713 00735 •1338 11 40200 •4876	TEMP 138.18 • 46236 • 1628 • 10840 • 45934 • 1770 • 93232	PRESS 1110 - 74 - 57773 1.7309 - 01050 95-2362 - 57395 1.7423 4.81282 6	ACCE. 79.39 .80820 1.2373 .01471 67.9745 .80292 1.2455	ACCEL 69.59 1.0831 011562 59.4548 .91754 1.0902 53.1339	ACCEL 55.87 1.15325 .8671 .02104 47.5271 1.14571 .8728	ACCEL 37.58 1.72659 .5792 .03162 31.6237 1.71530 .5830 28.49333	N SPEC 19.29 3.43383 .2912 .06361 15.7212 3.41138 .2931	M SPEC 14.72 4.56162 .2192 .08513 11.7652 4.53181 .2207	5.68129 .11.97 .11.97 .11.97 .17.60 .10682 9.3682 9.4682 9.4682 9.4774 8.77826	M SPEC 10.15 6.79306 1472 12867 7.777 6.72999 6.72999
RADIJS 59800.000 TIME 592.611 9.97665	611 SEC 7685 MIN 614 HRS	ALTITUDE VELOCITY	0. 0. 112.038 2.1669 367.577	KA KFT METER/ MB/SEC FT/SEC	SEC DO	PAESSJRE DYN P DOPPLER MACH NO	97861 966080 011554 8 123237E	BARS ATH BARS +02 CPS	TEMPERATURE	RE 145.200 -198.310	OO KELVIN 10 FAHRENHEIT	HE 1.1
INSTRUMENTS NO 0° NEAS KM/NEAS HEAS/KM HEAS/KM BARS/MEAS HEAS/MEAS HEAS/BARS HEAS/BARS HEAS/BARS HEAS/BARS HEAS/BARS HEAS/BARS	198.54 1 .33575 . .2.9784 2 .00651 131 .33106 .	PRESS 70.32 39163 .5534 00759 .7133 11 38500 .5976 43096113	16MP 149-15 144750 2-2346 00868 5-2261 2-2732	PRESS 113.52 .55917 1.7884 .01085 92.1489 1.54970 1.70186	ACCEL 85.65 .7828 1.2783 .01520 65.7727 .76902 1.3004	ACCEL 75.08 . 89371 1.1189 . 01738 57.5302 1.1382 56.813382	ACCEL 60.26 1.11634 . 8958 . 02174 45.9907 1.09741 45.51743	ACCEL 40.51 1.67151 .5983 30.6049 1.64318 30.45686	M SPEC 3.32538 3.32538 15.2199 3.269911 3.269911 3.3059	M SPEC 15.65 4.41847 .2263 .08792 11.3741 4.34358 .2302	5.50 EC 12.65 5.50 EC 0.1012 9.1001 9.3669 9.3669 9.3669	A SPEC 10.88 6.58252 0.1519 13281 7.5293 6.45372 7.65970

SECONDS AT 59900.060 KM RADIUS • SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONDGRAPH SATURN JOMINAL ATMOSPHERE
BALLISTIC CZEFFICIENT = .700, INITIAL TIME =

BAL. COEF. 0.55/0.70/1.50 SEP 30 BARS

RADIJS 59795	5.000 KM	ALTITUDE	15.00	2 X X	PRE	PRESSJRE	1.078744	BARS	TEMPERATUR	E 150.1	15 KELVIN 62 GABGENHETT	11.07
TIME 637 10.5 •17	37.959 SEC .53265 MIN 177211 HRS	VELOCITY	108.526 2.2374 356.057	METER/ MB/SEC FI/SEC	SEC	DYN P DOPPLER Mach no		3ARS E+02 CPS		•		
INSTRUMENTS NO OF MEAS KM/MEAS	TEMP 213.65	PRESS 183.27	TEMP 160.49	PRESS 128.59 .54171	ACCEL 92.14 .75788	ACC : L 80.74 86536	ACCEL 64.80 1.08153	ACCEL 43.53 1.61962	M SPEC 22.27 3.22297	N SPEC 16.95 4.28310	M SPEC 13.76 5.33642	M SPEC 11.63 6.38306
MEASTAN	3.0745	2.6358	2.3067	1.8460	1.3195	1.1549)	4219	.3103	. 2335	.1874	. 1567
BAKS/ HEAS MEAS/ BAR	148.8371	127.5529 11	1.5897	89.2412	63.7002	55.7197	3	25.6460	14.7473	11.0229	8.7886	7.2992
DEGK! MEAS	31973	37296	.42517	.53253	1.3422	. 85113	4	1.57399	3.10967	4.12516	5.13391	6.13638
MEAS/ PSCHT 1	161.056631	38, 09628120	. 8760	6.757.9	59.21503	60.60+32	48.5	32.47789	16.40347	12,38419	9.97225	8.36398
RADIJS 59790	000 KM	ALTITUDE	-10.00	A Y	PRE	PRESSJRE	1.185129	BARS	TEMPERATURE	RE 154.927	7 KELVIN	11.50
TIME 684.	1.758 SEC	VELOCITY	105.196 2.3133	METER/ MB/SEC	SE C	DYN P DOPPLER	62.0	BARS +02 CPS				
• 13	0211 HR		345.13	0 FT/SEC		CH NO	.116780					
INSTRUMENTS	TEMP	PRESS	TEMP	PRESS	ACCEL	ACCEL	ACCEL	ACCEL	M SPEC	M SPEC	M SPEC	M SPEC
NO OF MEAS	229.52	196.65	172.19	137.95	98.82	86.59	69.48	46.65	23,83	18.12		15.41
KH/ME AS	.31528	. 36777	.42024	.52513	.73471	. 83939	1.04857	1.57034	3,12583	4.15482	5.17755	6.19417
MEAS/ KM	3,1718	2.7191	2,3796	1.9043	1,3611	1,1913	.9537	.5368	m,	2042.	.1931	.1614
BARS/ MEAS	.6900	60800	. 00925	.01156	01620	•	.02316	38450.	# PP 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.50	. 11/32	.14123
MEAS! BAR	144.2285	123.6U43 1U 15225	8 1362	5054.65	010/19	603976	1.00431	1.50406	2.99390	3.97945	0.2536	5.93273
MEAS/ DEGK	3.3115	2.8389	2.4845	1.3882	1.4211	1.2438	1366.	6499	.3340	.2513	.2017	•
MEAS/ PSCHT 1	171.428901	6. 38648128	6546610		9	6** 49507	51.66064	34.55054	17.43926	13, 16128 1	0.59397	8.08216
RADIJS 59785	. 00 J KH	ALTITUDE	-15.00	10	PRE	PZESSJRE		BARS	TEMPERATURE	;		
,			9.21	3 KFT	0.00	2	1.281323	ATM		-172,141		Æ I T
12.20	1696 MIN 13616 HRS		2.384	9 M3/SEC 1 FT/SEC	٥	DOPP-ER MACH NO	7.399562E .111583	+05				
INSTRUMENTS	TEMP	PRESS	TEMP	PRESS	ACCEL	ACCEL	ACCEL	ACCEL	M SPEC	M SPEC	M SPEC	M SPEC
S	245.34	210.43	184.25	147.60	105.72	92.53	74.30	49.87	25.43		15.66	13.22
KH/HE AS	.30589	.35682	. 40773	.50951	.71288	. 814+7	- i	1.52391	3,33422	4.03376	5.02756	6.01574
MEAST KM	2502.5	0700 47	0764.7	1.902/	11670	01010	• =	78550	0720		12085	14506
MFAST HEAS	139.8855	113.8835 10	4.8820	83.8799	59.8775	52.3750	3	27.8746			8.2744	6.8747
DEGK/ NEAS	.29298	. 34176	.39052	.48800	.64273	.78039		1.45959	2.30616	*	4.81536	5.76183
MEAS! DEGK	3.4132	2,9261	2.5607	2.0492	₽,	1.2819	٠,	,	• '	•	.2077	• 17
MEAS/ PSCHT 1	82.11303	156. 14431135	.6677510	9.40055 7	78.23797	64.49955	04-8629U	36.68740	18.2000	13,96275 1	1.23523	9.41663

SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN VOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

•

SEP 30 BARS

BAL. CUEF. 0.65/0.70/1.50

SECONDS AT 59900.000 KM KADIUS

				16.6	.617 KFT			4 . 20000	476		•		F + 100 2 0 0 0 0 0
TIVE	782.740 13.04567 .217428	740 SEC 567 MIN 428 HRS	VELOSITY	325	- Or 10 =0	SEC	DYN P BOPPLER MACH NO	1.33322 AIR .011578 BAR 7.1651316+02 .106761	HIE BARS 1+02 CPS		-163.561	DI FAHKENMEII	
INSTRUMENTS TO NO 0: NEAS 261 XA/NEAS 23 343 AEAS/ MEAS 40 BEAS/ MEAS 40 BEAS/ MEAS 40 BEAS/ BEGK MEAS 3.5 MEAS/ PSCHT 193.11	61	E 4 4 3 3 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	PRESS 224.654 .34650 2.8660 .00659 115.3776 .33187 3.0132	TEMP 196.68 39594 2.5256 101.0982 101.8156 3.3792 2.6369	PRESS 157.55 .49478 2.0211 .01228 81.4290 .1.4290 2.1102	ACCEL 112.62 .69230 1.4445 .01720 58.1300 58.1300 1.5081	ACCEL 98.84 79037 1.2643 01957 50.8430 1.3200 72.62637	ACCEL 79.27 .98815 1.0120 1.02460 40.6558 1.94645 1.95665	ACCEL 53.18 1.48013 .6756 .03695 27.0649 1.41765 38.8853	M SPEC 27.09 2.94.779 .3392 .07421 13.4.744 2.82337 2.82337 2.82337	H SPEC 20.37 2.91948 .2551 .09924 10.0770 3.75405 .2664 14.78834	M SPEC 16.65 4.88990 .2047 .12440 8.0388 4.67958	M SPEC 14,05 5.84714 .1710 .14970 6.6801 5.60035 .16976
ADIJS 3 TIME	833.924 13.99874 .231646	000 KM 924 SEC 874 MIN 646 HRS	i	96 96 315	.000 K4 .021 K ⁺ T .308 METER/ 5281 MB/SEC .971 FT/SEC	SEC.	PRESSJRE DYN P JOPPLER MACH NO	1.545860 9AK 1.525645 ATH .011578 BAR 6.982771E+02	BARS ATH BARS + 02 CPS	TEMPERATURE	IRE 169.294 -154.941	94 KELVIN 41 FAHRENHEIT	HE11
INSTRUMENT NO OF MEAS NEAVERS MEAS/KA MEAS/BAR DEGK/MEAS MEAS/BAR DEGK/MEAS MEAS/PSCH	20 20	TEMP 278.97 28869 3.4639 0.03758 131.9312 1 27650 3.6165 14.4465917	PRESS 239.26 33676 2.9695 113.00894 113.00894 32254 3.1004 175.287441	TEMP 209.48 .38481 2.5987 01011 98.9214 .36857 2.7132	PRESS 167.78 .49089 2.0795 .01264 79.1155 .45059 2.1711	ACCE 120.13 .67288 1.4862 .01771 56.4468 1.5515 87.80954	ACCEL 105.24 . 76830 1.3007 . 92024 . 43.4035 . 73635 1.3531 75.87476	ACCEL 84.39 .96048 1.0412 .05531 39.5038 .91994 1.0870	ACCEL 56.59 1.43876 .03802 26.3001 1.37805 +1.15420	M SPEC 28.8610 3.86610 3.1489 13.0967 2.74512 2.74512 2.74512	A SPEC 21.85 3.81143 .2624 .10208 9.7961 3.65939 15.63809	M SPEC 17.66 4.75190 .2104 .12794 7.85133 4.55133	A SPEC 14.90 5.68759 .1758 .15394 6.44958 5.44795 10.53375
ADIJS TI4E	9770. 885. 14.77	SEC MIN MRS		-30 93 22 307	KY KFT METER/ MB/SEC FT/SEC	SEC	PRESSURE DYN P DOPPLER MACH NO	1.680672 BAR 1.658695 ATR 011578 BAR 6.791489±+02	s ces	TEMPERATURE	RE 174.083 -146.321	33 KELVIN 21 FAHRENHEIT	HE IT
INSTRUMENTS NO OF MEAS KM/MEAS HEAS/KM BARS/HEAS MEAS/HEAS MEAS/DEGK MEAS/DEGK	S	TEMP 296.52 •28079 3.5613 •00780 28.2799 3.7183	PRESS 254.31 . 32755 3.0530 . 0910 103.9400	TEHP 222.64 . 37.429 2.6717 . 01040 96.11850 2.78950	PRESS 178.31 .46775 .01379 .01300 76.9231	ACCE 127.65 65451 1.55491 54.9203 66689	ACCUIL 1111-92 1111-92 103472 103472 103472 10472	ACCEL 000.00 1.00460 1.00700 3.007000 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.007000 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.007000 3.00700 3.00700 3.00700 3.00700 3.00700 3.00700 3.007000 3.00700 3.	ACCEL 60.16 1.39967 .7145 .03910 25.3767	A SPEC 30.55 2.78878 .3586 .07890 12.7392	A SPEC 3.70911 1.2696 9.5301 3.5556	H SPEC 18.73 4.62496 .2162 .13150 7.6047	M SPEC 15.536.78 5.536.39 .1806 6.3212 5.30271

SECONÚS AT 59900.000 KM KADIUS • SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MUNGGRAPH SATURN VOMINAL ATMOSPHERE
BALLISTIG CDEFFICIENT = .700, INITIAL TIME =

30 BARS
SEP
0.65/0.70/1.50
CO EF.
BAL.

RADIJS 39765	.000	ALTITUDE	-35.000	₹. 1.5	_	PRESSIRE	1.823125	BARS ATA	TEMPERATUR	178.872 -137.701	72 KELVIN 31 FAHRENHEI	HEIT
TIME 940. 15.57 . 251.	1.680 SEC 7800 MIN 1300 HRS	VELOCITY	91.172 2.6714 299.121	METER/ M3/SEC FT/SEC	SEC DO	DYN P JOPPLER MACH NO	.011578 6.610398 .094194	BARS .+ 02 GPS				
INSTRUMENTS NO OF MEAS KM/MEAS	TEMP 314.56 .27332	PRESS 269.77 .31883	TEMP 236.17 .36433	PRESS 189.14 .45531	ACCEL 135.33 .63712	ACCEL 118.59 .72736		ACCEL 63.71 1.36262	M SP 32. 2.715	M SPEC 24.52 3.61210	M SPEC 19.81 4.50435	H SPEC 16.68 5.39291
AST KH RST MEAS	3.6588	3.1365	2.7447	2.1963	1.5696	1.3737	1.0995	.7339		.13778	.2220 .13500	.1854 .16246
MEAS! BAR DEGK! MEAS	124.8227	105.9777	3,5941	74.8569	53.4430	45.7512 . 69723		24.8914	12.400	9.2778 3.45964	7.4044	6.1555 5.16528
AS/ DEGK AS/ PSCHT 2	3,820 28,0669	3.2747	. 8657 1331513		1.6387	1.43+2	1.1479	. 7652 45.87829	23.10382 1	. 2890 17. 40979	.2318	.1936
RADIJS 59760 TI4E 996	9760.000 KM 996.252 SEC 16.30420 MIN .276737 HRS	ALTITUDE VELOCITY	-40.000 -131.234 88.804 2.7431 291.352	KM KFT METER/ MB/SEC FT/SEC	SEC 30	PRESSURE DYN P JOPP-ER MACH NO	1.973431 B 1.947623 B 1.011578 B 6.438704E+	BARS ATH BARS +02 CPS	TEMPERATURE	KE 183.661 -129.081	51 KELVIN B1 FAHRENHEIT	# III
STRUMENTS	TEMP	PRESS	TEMP	PRESS	ACCEL	ACCEL	ACCEL	ACCEL	M SPEC	M SPEC	M SPEC	M SPEC
OF MEAS	333,08	285.64	250.06	200.25	143.32	125.53	100.63	67.42	34.21	25.91	20.93	17.60
AT AN	. 26623	1.2200	. 55489 2.8178	2.2548	1.6113	1.4102	1.1287	1.36141	3775	.2841	.2276	19021
RSTMEAS	.00823	09600	. 01097	.01372	.01922	. 02137	.02747	.04125	.38279	.11064	.13862	.16672
AS/ BAR	121.5445	10+.1689	1.1371	72.8928	52.0421	+5.5252	36.4041	24.2413	12.0757	9.0382	7.2141	5.9980
SK/ MEAS	3.9217	3.3619	33991	2.3541	1.6823	.67919	1.1784	1.271+4	2.53424	3.371+0	4.20+87	5.03470
MEAST PSCHT 2	+	06,069521	. 3524014	348261	03.20062	90.34136	72.33980	46.33677	24.33311 1		14.73079	12.32990
ADIJS 59755 TIME 1053	. 000	ALTITUDE VELOCITY	7 · 63 6 · 55			ESSJRE DYV P	2.131804 2.103927 011578	BARS BARS BARS + 02 GPS	T E MP E RATURE	168	450 KELJIN 461 FAHRENHEIT	HEIT
	ZΞ		283.97	FT /	N E	MACH NO	.087122	<u>,</u>				
INSTRUMENTS	TEMP			PRESS	ACCEL	ACCEL	ACCEL	ACCEL	MSPEC	M SPEC	M SPEC	M SPEC
¥ 4	352.10	~, ,	264,32	211.66	151.47	132.25	10c.33 .863bo	1.29409	2.57980	3. +3239	4.28139	10.22 5.12687
ASTKM	3.8536	. ,~,	•	2,3132	1.6530	1.4457	1.1579	.7727	.3876	.2913	.2336	.1951
BARS! MEAS	* 00 844	.00985	٦,	. 61408	.01972	. 32254	.02819	.04233	46480.	.11350	14219	17099
MEAS/ BAR Degk/ meas	118.4317	101.		.41406	.57943	.66230	.82721	1.23947	2.47032	5.28752	0.0	4.91047
MEAS/ DEGK	4.0234	3.4490	₩,	2.4151	1.7258	1.0104	1.2089	\$018°	74044	30+5	.2439	.203b
	56.316.36	7 /6706	1 10210	104016	*	4 3 7 7	J •	•	١.			

SECONDS AT 59900.000 KM RADIUS • SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN VOKINAL ATMOSPHERE
BALLISTIC CLEFFICIENT = .700, INITIAL TIME =

SEP 30 BARS
BAL. COEF. 0.65/0.70/1.50
. COEF.

			-164.042				2.268403	ATH		-111-640	40 FAMPENMETT	HE I T
TIVE 111	1111.783 SEC 18.52972 MIN .338829 HRS	VELOCITY	2.8866 276.963	METER/SEC MB/SEC FI/SEC		DYN P DOPPLER MACH NO		BARS + 02 CPS				- - -
INSTAUMENTS NO O: MEAS KHYMEAS MEAS/ KM MEAS/ KM MEAS/ KM MEAS/ BAR DEGK/ NEAS MEAS/ DEGK	TEMP 371.59 .25310 3.9511 5.00866 115.4722 4.1252	PRESS 318.65 3.3870 93.9658 8.2879 3.5362 127.9665199	TEMP 33739 2.9639 01155 6.5859 3.0945	PRESS 223.36 .42165 2.3716 .01444 69.2542 2.4781	ACCEL 159.83 .59007 1.6947 49.4465 49.4465 1.7694 1.7694	ACCEL 139-97 67422 1-4832 43.2536 64576 1-5486	ACCEL 112-16 .84243 1-1870 .02891 34-5908 .0667 1-2394	ACCEL 75.12 1.26233 .7922 .04341 23.0353 1.20905 1.20905	N SPEC 34 06 2.51669 0.3973 0.08709 11.44821 2.41065 26.86809	A SPEC 26.75 3.34.90.7 . 2986 . 11636 8.5937 3.20766 3.3118	M SPEC 23.24 4.17782 .2334 .14576 6.86U7 4.00148 16.26393	M SPEC 19.53 5.00333 .17527 5.7054 4.79215 13.60761
RADIJS 59745 TIME 1171 19.5	.000 KM .743 SEC 2905 MIN 5484 HRS	ALTITUDE VELOCITY	-180.446 82.384 2.9583 270.288	KATER SEC H3/SEC FT/SEC		DYN P DOPPLER MACH NO	2.473612 2.441265 011578 5.973205E	BARS ATM BARS +02 CPS	TEMPERATURE	103	.220 FAMRENHEIT	ÆIT
INSTRUMENTS NO 0= MEAS KMYNEAS HEAS/KM HEAS/BAR DEGK/MEAS MEAS/DEGK MEAS/PSCHT	TEMP 391.56 .24700 .24700 112.6559 .23658 .23658	PRESS 3 35.78 3 25.78 3 4705 0 01036 95.5517 2 27598 3 6234 3 6234	TEMP 293.94 3.0370 3.0370 4.01184 6.01184 3.1788 3.1788	PAESS 235.35 241151 2.4301 37.3568 37.3568 39414 2.5372	ACGE. 168.39 157588 1.7365 002073 48.2420 .55153 1.8130	ACCEL 147.47 1.656.12 1.656.12 4.2.026.39 4.2.026.39 1.68026 1.986.7	ACCEL 118.17 .02520 1.2162 .02963 33.72963 1.2696 83.98126	ACCEL 79-12 1-23209 -8116 -04449 22-4449 1-18008 1-18008 56-09778	A SPEC 2 + 5694 2 + 5694 3 + 6040 11 - 08925 11 - 2320 2 - 3320 2 - 4249 2 6 - 21375	M SPEC 30.29 3.26956 .3059 .11923 8.3871 3.13156 .3193 21.24241	A SPEC 24.44 4.07496 6.02498 14.9638 6.6983 6.69691 7.05980	A SPEC 20.53 4.06553 .2047 .17955 5.5693 14.27054
ADIJS 3 TIME	.000 KH .166 SE 5276 MI 2546 HR	* >		KY KFT METER/ MB/SEC FT/SE3	SEC JOH	PRESSURE DYN P JOPP-ER MACH NO	2.657475 2.622724 .011578 5.832621E	BARS ATH BARS +02 GPS	TEMPERATURE	RE 202-017 -94-600	KEL FAH	ÆIT
INSTRUMENTS NO OF MEAS KM/NE AS MEAS/KM BARS/MEAS MEAS/BAR MEAS/ BAR MEAS/ DEGK	TEMP 412.06 • 24120 • 24120 • 01460 • 01909 • 23102 • 3287	PRESS 353.33 . 26137 3.5540 . 01061 9+.2567 3.7107	TEMP PRESS 309.29 247.653 .32154 .40184 3.1101 2.4885 .01213 .01516 2.4615 55.9566 3.0796 .38488	PRESS 247.63 241364 24885 01586 05-3566 2-38488	ACCEL 177.17 •56237 1.7782 •02123 •7.0939 1.8565	ACCEL 155.15 • 64538 1.55532 • 1.19437 • 61548	ACCEL 124.32 .80293 1.2454 .03035 32.5468 .76904	ACCEL 83.21 1.20326 .8311 .04557 21.9436 1.15247	A SPEC 42.11 2.39977 .4167 .09416 10.9416 2.29848	3.19376 31.83 3.19376 .3131 .12210 8.1899 3.05896	3.98485 3.98485 3.98485 3.5850 5.1291 5.1896 3.81666	4.2PEC -77308 -16308 -57438 -16308 -57438 -5748 -57438 -57

SECONDS AT 59900.000 KM KADIUS • SURVIVAJLE SATURN PROGE TASK 4 DESCENT RUNS
JP. MJNOGRAPH SATURN JOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

MALLISTIC COEFFICIENT = ./UU, INITIAL LIME = 0. BAL. CJEF. 0.65/0.70/1.50 SEP 30 BARS

RADIJS 59735.000 KM		ALTITUDE VELOCITY	-65 -213 78	K4 K*T METER/	SEC P.	ESSJRE DYV P	2.850264 2.812992 011578	BAKS ATH BAKS	TEMPERATURE	207.6	06 KELVIN 80 FAHRENHEIT	£11
21.50085	0065 MIN 0014 HRS			MB/SES FT/SEC	0 7	DOPPLER MACH NO	698491E 075371	+02 CPS				
INSTAUMENTS NO OF MEAS KM/MEAS	TEMP 433.02 •23566 4.24533	4 2 2 2	TEMP 325.U1 .31415 3.1832	PRESS 260.21 .39262 2.5476	ACCE. 186.15 .54947 1.8199	ACCEL 163.01 .62735 1.5927	ACCEL 130.61 .78453	ACCEL 87.40 1.17574	M SPEC ++.20 2.34517	M SPEC 33.40 3.12136 .3204	A SPEC 26.92 3.89483	M SPEC 22.60 4.66562
BARS/ MEAS BARS/ MEAS BEGK/ MEAS MEAS/ DEGK MEAS/ DEGK MEAS/ PSCH[3	46443 00931 107.4076 422571 4.4305 06.63978	6 6	9 8 1		10134 45.9982 45.9982 1.9001 31.6065311	1.5967 0.2435 +0.2411 .60135 1.6629 15.19713	10.5747 32.1812 32.1812 1.3308 92.22394		.09356 10.6482 2.24619 .4452 30.96138 2	.12497 8.0016 2.98908 .3346 3.30321		. 18814 5. 3152 4.46684 . 2239 15. 64453
ADIJS 59730 TIME 1360	SEC AIN ASS	⋖ >	-70 -229 76 3.	.000 KY .659 KFT .828 METER/SEC 1761 MB/SEC .059 FT/SEC	χ ο _Σ	DYN P DOPPLER MACH NO	3.052197 3.012284 .011586 5.570350E	BARS ATH BARS + 02 CPS	TEMPERATUR	E 212.392 -77.364	32 KELVIN 54 FAHRENHË	113
NSTRUMENTS O 07 MEAS MYMEAS MYMEAS ARS/MA ARS/MA ARS/MA EAS/BA EGK/MEAS EGK/MEAS EAS/DEGK EAS/DEGK	TEMP +34.67 •23035 +•3410 •00953 104•9597 •22044 +•5363	PRESS 389.59 389.59 5.26873 3.7212 84.9576 5.5716 3.8886 3.8886	TEMP 341.10 341.10 3.2563 . 2563 . 29387 3.4028 40.725981	PAESS 273.06 .38381 2.5095 62.91588 62.359236 2.7227 2.7227	ACCE	ACCEL 171.15 1.6233 1.6233 0.02543 39.3256 1.7026 20.52859	ACCEL 137.04 1.30.04 1.30.39 0.3180 31.495 0.73392 1.3625 95.48918	ACCEL 91.69 1.14943 .8700 .04774 20.9481 1.09994 .9091	# SPEC 46.35 2.2988 2.2988 2.4361 0.0572 10.4468 2.19423 32.38311 2	M SPEC 35.01 35.01 3.05212 .3276 .12785 7.8216 2.92069 4.36950	M SPEC 28.21 3.80872 .2626 .10309 6.24471 .2744	A SPEC 23.67 4.56281 5.1924 5.1964 4.36632 6.35543
RADIJS 59725.00J TI4E 1+25.213 23.77022 336173	9725.000 K4 1+25.213 SEC 23.77022 MIN .336173 HRS	ALTIT VELOD	246 75 3.	.000 KY .063 KT .137 METER/S 2481 M9/SEO .514 FI/SEO	SEC.	AESSURE DYA P BOPPLER MACH NO	3.253491 3.220815 011586 5.447804E	BARS ATK BARS + 02 CPS	TEMPERATURE	E 217.177 -68.751	7 KELVIN 31 FAHRENHEIT	£11
INSTRUMENTS NO OF MEAS KMYMEAS MEASKM HARSY MEAS HEASKMEAS HEASY BAR DEGKYMEAS MEASY DESK MEASY DESK MEASY DESK MEASY DESK MEASY DESK MEASY DESK	1 EMP PR + 70 + 70 + 70 + 70 + 70 + 70 + 70 + 7	ESS 283 283 137 137 151 750 8392	TEMP 357.55 3.3294 0.01300 76.911 .26742 3.4793	PAESS 285.24 .37538 2.6640 .01625 61.5506 .35921 2.7339	ACCEL 204.74 .52535 1.9035 .0275 43.9500 .50273 43.9504 43.929212	ACCEL 179-28 • 60030 1.0058 • 02501 33-4439 • 574+5 1.7438	ACCEL 143.62 .75013 1.3331 .03252 30.795 .71783 1.3931	ACCEL 96.06 1.12427 .04835 .04882 20.4882 1.07586 .3295	M SPEC +8.54 2.24.303 147.58 197.84 10.297.84 2.14.644 2.14.659 33.83.8464 2	M SPEC 36.06 2.98535 .3349 .13073 7.6492 2.45727 .3530	M SPEC 29.52 3.72528 .2584 .15359 6.1093 3.5554 20.43344	H SPEC 24.77 4.46436 .2240 .19675 5.0827 4.27212 .2341

SECUNDS AT 59900.000 KM MADIUS • SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN YOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

SEP 30 BARS

TIME 1+93.490 2+.89150 .414858	90 SEC 50 MIN 50 HAS	VELOCITY	-262.457 TY 73.520 3.3201 2+1.206	METER/S METER/S MB/SEC FT/SE3	EC	DYN P DOPPLER MACH NO	3.438800 ATM .011586 BAK 5.330517E+02 .068186	ATH BAKS: +02 GPS		-60.139	39 FAHRENHEIT	HEIT
INSTRUMENTS NO OF HEAS KHYMEAS HEAS/KM BARS/MEAS HEAS/BAR DEGK/MEAS HEAS/BAR HEAS/BAR HEAS/BCAR HEAS/PSCAT 350	TEMP 436.83 *22045 4.5301 106.3778 *21096 *7472 0.2525030	PRESS +27.71 •25718 3.8884 •01162 85.0312 •24610 •1634	TEMP 374.37 25589 3.4026 .0126 75.2713 5.26124 3.5557 62.77227210	PRESS 243-70 -35731 2-7225 -01661 0-2074 -35149 2-8450	ACCEL 214.35 .51407 1.9453 42.9915 .49153 2.0328	ACGEL 187.59 . 587.41 1.7024 . 02559 37.6116 . 56212 1.7730	ACCEL 150.35 73403 1.3623 5.0797 7.0242 1.4236	ACCEL 100.57 1.10018 .9089 .04991 20.0371 1.05280 .9498	M SPEC 50.78 2.19519 .4555 .1005 9.9947 2.10066 .4760 35.32266	M SPEC 38.34 2.92237 13422 13422 7.4841 2.75652 26.57421	3.64730 3.64730 3.64730 1.2742 1.16729 5.9778 3.49024 21.32497	M SPEC 25.89 4.37003 .2288 .20106 4.9737 4.16185 .2391
RADIJS 59715.000 TIME 1362.232 25.03713	SEC HRS	ALTITUDE VELOCITY	05 -85.000 -278.871 17 71.970 3.3922 236.122	KA KFT METER/ MB/SEC FT/SEC	500	DYN P DOPP-ER VACH NO	3.715033 3.666453 011586 5.2181598	BARS ATM BAKS +02 CPS	TEMPERATURE	226.7	46 KELVIN 26 FAMRENHEIT	HE11
NSTRUMENTS O OF MEAS MIMEAS MIMEAS EASIMEAS ARSIMEAS EGKIMEAS EGKIMEAS EGKIMEAS EGKIMEAS EGKIMEAS EGKIMEAS	EMP 33374 5552 5552 5552 5552 5552 5552 5552 55	28ESS +47.35 +27.35 3.9720 01188 8+.1915 +1508	TEMP 391.56 .28770 3.4728 0.1358 73.6620 .27532 3.6322 74.15639219	PAESS 313-45 - 35958 - 25958 - 01697 - 34-09 - 3914015	ACCEL 224-18 -50325 1-9871 -02377 42-0732 -48158 2-0765	ACGEL 196.28 197536 1.7339 02717 35.4034 1.8172 37.243371	ACCEL 157.22 71861 1.3916 .03397 29.4377 .68736 1.4542	ACCEL 105.15 1.07710 .9284 .05039 19.6101 1.03071 .9702 73.35114	M. SPEC. 2.14934 .14934 .1022 9.7653 2.05628 2.05628 6.05628	H SPEC 40.06 2.85151 3.495 13650 7.3858 2.73828 3.652 2.73828	3 SPEC 3 57155 5 71555 17.089 5 41317 2 2 2930	N SPEC 27.04 4.27344 6.2337 4.26537 4.07167 4.07167 18.58464
RADIJS 59710.000 TIME 1632.441 27.20735 453456	S S S S S S S S S S S S S S S S S S S	ALTITUDE VELOCITY	DE -90.000 -295.276 TY 70.473 3.4671 231.225	KA KFI AETER/ MB/SED FT/SEG	SEC DO	PRESSURE DYV P DOPPLER MACH NO	3.955723 3A 3.9059723 3A 3.90595 3A 5.109947E+0	RS RS CPS	TEMPERATURE	RE 231.488 -42.991	KEL FAH	HEIT
INSTRUMENTS NO OF MEAS KHYMEAS HEAS/KH HEAS/KH HEAS/RA HEAS/RA HEAS/RA HEAS/RA HEAS/RA HEAS/RA HEAS/RA HEAS/RA	54-7 EMP - 521134 - 4-7317 - 01040 96-1630	+ + 0 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	TEMP + 05-11 • 26174 3 • 5493 • 01387 7 2 • 1115 5	2 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	24 CCE 24 4 CCE 2 + 42 28 3 2 + 12 4 28 4 2 + 58 4 5 2 + 58 4 5 2 + 58 4 5 2 + 58 4 5	2000 CE C C C C C C C C C C C C C C C C C	ACCEL 164.24 .70373 1.4210 .03470 28.8470 28.8470	ACCEL 103.83 1.05483 .95486 .9486 15.1982	20.00.00 0.00.00 0.00.00 0.00.00 0.00.00 0.00.0	A SPEC + 1.41.41 2. #0262 • 3568 • 13942 7.1727 2.60708	3. 498.65 3. 498.65 3. 498.65 1.289.9 2.274.93 3.254.14	M SPEC 28.21 28.21 4.19180 .2386 .20975 4.7677 3.89935

RADIJS 59705.000 KM TIME 1704.129 SEC 28.40215 MIN 4473369 MS 1NSTRUMENTS TEMP NO 0" MEAS 569.04 KMYMEAS 4.8308 MEAS/KM 4.8308 MEAS/KM 4.8308											
705.000 KM 705.000 KM 705.000 KM 8.47359 H2S 17S TEMP 5 20701 4.8308 4.8308	* * * * *										
70+129 SE 8+0215 MI 473363 HR ITS 569-0 52070 4-830	_	000	1		7	4.206758	4 ⊢	Đ.	E 236-14	D KELVIN 9 FAMRENHE	Æ 1.1
11S 569.48 11S 569.40 12S 569.40 13 6010	VELOCITY	.03	Ξ.	ن	a. -	. 011595	BARS) }		
11 S 569 · U . 207 J		3.5403 220.481	发压	00 P	ACH NO	∞ ~	+				
.2073 .2073 .4.830 .0105	S	~	S	()	ALGE	병	E C	PE	M SPEC	M SPEC	S
.2070 4.830 4.0105	68.78	27.03	41.8		7	*	114.6	57.8	7		59.4
4.830	2+149	27597	3449	∞ .	5515	33	32	21	2.7+573	3.42740	6
.0105	.1410	.6236	მე	_	. 812	9	9	4 05	.3642	.2918	. 243
	239	01+16	.01771	2	0283	.0354	.0231	9 6	. 14235	1/31	77.
94.153	7.025 7	.6397 5	7674.9	vo.	97	<u> </u>	5	2 4	9+70	110.6	4.00
5.193	. 7.7.464 + . 4.515 6 . 0.5500.267	. 6707 1 3 - 8954 6376 1238	. 32 0 0 5 3.11 c 7 . 095 9 3 1 7	2.2269 0.1626214	4 S M	1.5595	1.0404	. 5213 . 5213	.3915 04877 2	.313b	•
RADIJS 59700.000 KM	ALTITUDE	00.	 X;	PRES	SSJÆE	900	BAKS	TEMPERATUR	E 240.79	1 KELVIN	11.75
77 : 403 55	VELOCITY	360.00	L L	ن	a .	.0115	DAR.			-	-
•		3.6137	MB/SEC FT/SEC	<u>∩ ऋ</u>	OPP_ER	4.904347E	+				
¥	U	Q.	· ·	္	100	- 5	ACCE	14	tı.	J. Jos.	N A
593.4	90	45.33	55.4	•	23.1		119.49	0.2	\$ 10.0 \$ 4.10	36.95	30.
. 2028	563	27042	3379	73	t 0 3	3	1.01256	•	95	3.3:932	25
4.929	. 2259	.6980	.358	Ξ	650	20	9446	16+	371	.2977	2
.0138	265	01++6	.01807	0.025	0263	903	. 0543	889	1452	.15187	9
92.235	0533 5	. 1068 2	5.3258	2 0		900	16.4105	¥ 1 6 4	9229	7.4300	4.5/2
• 1850 8 299	717	25122	.31440	.44004	1.9887	1.5.937	1.0617	1.00001	3000	3005	•
MEAS/ PSCHT +12.6437235	3,74164369	2+7	.7174817	35331	9470	. 23	32.79174	~	1,25153 2		~
DANT OF AUGUSTONS KM	A TITING	-105.000	y ×	5.7 2d	SSLRF	! 5	19	TEMPERATUR	E 245 44	1 2	
	-	91.118	: 4	,		.6788	ATM		-17.87	ı ıs	EIT
35 1.963 SE	VELOCITY	33	METER/S		<u>a</u>	.011595	BARS				
30.3		80	M3/SEC	900	P. ER	4.807487E	+				
4450 AR		č	2	◂	2	Ť					
TS TEM	8	TENP	٠ <u>′</u> ?	()	ACCE	щ	ACCE	3 PE	M SPEC	S	SP
S £18.3	30.13	63.99	M	•	32.5	N.	24.4	2.7	47.30	38	31.8
•1939	23196	2t508	23	~	5293	٠,	9926	9 1.	1 1		4
EAS/ KM 5.0232	0 :	•7724	~o.	2, 1565			1.0074	<u>.</u>	. 5	. 30	55.
. 1110	11291	114/5	11344		6670	ב ע	4000	700	• 140C4	9 6	7 4
10000	0 1/5/1		10101		100	4 4 5 6	2 2 2 2	9 7	2777		57.2
F 101	0/617	6007	٧ ·:		400	7	2 4 6	1 (4704		2723
7 + 29 • 30 38 53	. 5343 76461321	.83517257	.5339518	1089	61. 482351	28.93139	u637	43.19577 3	2.47856 2	4816	. 19

SECONDS AT 59900.060 KM RACIUS . 1 BALLISTIC COEFFICIENT = .700, INITIAL TIME SURVEVABLE SATURN PROBE TASK 4 DESCENT RUNS UP. MONOGRAPH SATURN JOHINAL ATMOSPHERE

SEP 30 34KS

BAL. CUEF. 0.65/0.70/1.50

EL M SPEC M SPEC M SPEC M SPEC 72 67.86 51.14 41.12 34.43 34.643 35.164 41.12 34.43 34.643 35.6563 35.16945 3.76978 3.76978 3.359 3.359 3.359 3.36978 M SPEC M SPEC M SPEC 49.20 39.56 33.14 2.5871 3.23060 3.87196 .3864 .3095 .2583 .15120 2.2844 4.3981 2.37666 2.96711 3.55611 .4208 .3370 .2812 .33.72677 27.04808 22.59418 3.72827 3.72827 2.25682 4.23629 4.2321 3.42419 24.30610 TEMPERATURE 254.684 KELVIN -1.239 FAHRENHEIT TEMPERATURE 259.276 KELVIN 7.027 FAMRENHEIT 250.092 KELVIN -9.505 FAHRENHEIT H SPEC 42.70 3.11049 .3215 .19667 5.0345 .3500 53.12 53.12 2.49128 .+014 . 15715 6.3632 2.28809 36.29658 M SPEC 65.27 1.34.322 .3146 .11325 8.8298 1.78473 M SPEC 70.50 1.87064 .5346 .11773 8.4943 .5820 +4.35304 . 5603 S TEMP PRESS TEMP PRESS ACCEL 134.72 .95487 1.0473 .05764 17.3500 ACCEL 140.00 .93697 1.0673 .05876 17.0190 .86055 5.024461 BAKS 4.958758 ATM .011606 BAKS 4.714279£+02 CPS .056811 5.319381 BAKS 5.249821 ATH .011605 BARS 4.623991E+02 CPS .055218 92.79046 1.1403 4.536985E+02 CPS .053697 5.625927 BARS 5.552358 ATM .011605 BARS S TEMP PRESS TEMP PRESS ACCE. ACCEL ACCEL ACCEL ACCEL B659.39 774.08 502.44 402.15 267.54 251.72 201.58 1.9125 2.2312 2.25419 3.9219 3.1379 2.2419 1.9613 1. ACCEL 209.49 .62501 1.6000 .03915 25.5437 .57404 +79.92278+11.40924360.02408288.08486205.86857180.17597144.20630 ACCEL 55 261.52 5 .50013 1.9995 31.9995 31.9931 .45934 DOPPLER MACH NO DOPPLER MACH NO DYN P JOPP-ER MACH NO PRESSIRE PRESSJRE ACCEL 298.85 .43765 2.2843 .02739 36.5040 2.40197 -110,000 KM -360,892 KFT 65,020 HITEK/SEC 3,7642 M3/SEC 213,322 FT/SEC ALTITUDE -115.000 KM -377.297 KFT VELOCITY 63.775 WHITEK/SEC 3.4383 M97.8EC ALTITUDE -120.000 KM -393.701 KT VELOCITY 62.575 METER/SEC 3.9126 M3/SEC 205.299 FT/SEC S TEMP PRESS 9 522.23 417.99 2 .25018 31269 3 .9971 3.1980 9 .01565 .01956 5 53.9049 51.1178 7 .22978 .28719 ALTITUDE VELOCITY PRESS 536.69 •21692 +55678 •01369 73.0385 •20107 •9735 1923.123 SEC 32.13538 ALN .535590 HRS 2005.773 SEC 33.42955 MIN .557159 HRS 248+.927 SEC 34.74878 MIN .579146 Hts TEMP 695.38 .18755 5.3288 .01173 85.2157 .17235 5.8020 RADIJS 39690.000 KM RADIJS 39685.000 KM RADIJS 59580.000 KM INSTRUMENTS NO DF HEAS KM/MEAS MEAS/KM BARS/MEAS NEAS/BAR INSTRUMENTS NO OF MEAS KM/MEAS MEAS/KM BARS/MEAS MEAS/BAR INSTRUMENTS
NO 0° MEAS
NEASY KM
NEASY KM
NEASY MEAS
NEASY NEAS
NEASY NEAS
NEASY NEAS MEAS/ PSCHT MEAST PSCHT MEAS/ DEGK MEAS/ PS3-1T

SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS JP. MONGGRAPH SATURN MOMINAL ATMOSPHERE BALLISTIC CSEFFICIENT = .700, INITIAL TIME =

SECONDS AT 59900.060 KM RADIUS •

30 BARS
SEP
05.1/0.7.0/50
COEF. 0.
BAL.

RADIJS 59675.003 TIME 2165.584 36.19307	- 000 KM - 584 SEC 9307 MIN 1551 H4S	ALTITUDE VELOCITY	7 -125 000 -125 000 -410 418 3 9470 201 503	KAT KFT METER/S MB/SEC FT/SEC	ŭ 0.5	DYN P DYN P OPPER	5.944343 5.866610 .011600 4.4530684	BARS A16 BARS +02 CPS	TEMPERATUR	L 263.0	58 KELVIN 93 FAHRENHE	HĒIT
INSTRUMENTS NO OF HEAS NHAME AS HEAS/KM HEAS/BAA DEGK/HEAS HEAS/BAA DEGK/HEAS HEAS/PSCHT +9	722.86 .18419 5.4292 .01196 83.6139 .16917 5.9113	PRESS 519.74 2.21488 + 5.538 0.1395 71.6649 1.9735 5.0671	TEMP 542.40 • 24556 4.0723 • 01595 52.7032 4.4340 3.2291829	PRESS 4.30691 5.30691 5.2082 0.1994 0.1568 3.5476 0.489221;	ACCEL 310.37 .42958 2.3278 .02792 35.8180 .39455 2.5345	ACCEL 271.70 .4909C 2.4371 .03191 31.3372 .45096 2.78301 6.778301	ACCEL 217.556 •51348 1.6300 •03990 25.6640 -5634 1.7748	ACCEL 145.37 .91470 1.0873 .05948 1c.0997 .84659 1.1639	M SPEC 73.19 1.33628 .11997 8.3355 1.03651 1.03651	A SPEC 55.14 2.44562 .4039 .1014 6.2445 2.2445 2.44515 37.61709	A . PPEC 3.02539 3.02539 6.3275 4.3275 4.9399 2.36134 2.15378	M SPEC 37.09 3.66022 .2732 .24076 4.1535 3.36169 .2975
RADIJS 53570.000 K TIME 2247.749 S 37.46243 M .624375 H	.000 KM .749 SEC 6243 MIN 4375 HRS	ALTITUDE VELOCITY	7 - 137 - 439 19	KA KAT METER/SE(MB/SEC FT/SEC		RESSURE DYN P JOPPLER YACH NO	6.274874 6.192819 011606 4.372136c	dars dars atr dars e+02 CPS	TEMPERATURE	268.4	401 KELVIN 559 FAHRENHË	HEIT
NSTA O O O O O O O O O O O O O O O O O O O	7 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRESS 5+3.21 •21097 +.7399 •31422 73.3396 •19377 5.1608 41.8716735	TEMP 562.94 . 24110 4.1477 . 1625 . 4 . 1625 . 15144 4.5160 . 6.67870309	### ### ##############################	ACCEL 322.11 .42179 2.3709 2.3709 35.1261 35.1261 2.5814	ACCEL 2 & 1.39 • 4 & 1.39 2 • 0.747 • 0.3251 30 • 7582 • 4423 & 5 • 503251 5 • 503251	ACCEL 225.77 225.77 1.0602 04065 24.6011 255322 1.8070	ACCEL 150.85 .90303 1.1074 .05101 16.3938 1.2057 13.35455	M SPEC 75.92 11.40311	M SPEC 57.19 2.40153 .4164 .16314 6.1299 2.20566 .4534	A SPEC 2.99867 2.99867 3.3335 4.39485 4.39331 4.39331 4.39331 4.39331 4.3931 4.3931 4.3951 4.	M SPEC 3.89.46 3.59452 2.2782 4.24524 4.30135 3.30135 2.3023
2331 33.3	A RAC SAS SAS	ALTITUDE VELOCITY	= -135.000 -442.010 -442.013 -442.224 +-1361 194.303	KY KFT METER/SE MB/SEG FT/SE3	D NA OOK	SSJRE LYN P PPLER CA NO	6.617767 0.531228 .011605 4.293978E	BAKS ATE BAKS + 02 CPS	TEMPERATURE	31.4	53 KELVIN 25 FAHRENHEI	HEIT
INSTRUMENTS NO OF MEAS KM/MEAS MEAS/KM BAKS/MEAS MEAS/BAR MEAS/DAR MEAS/DAR MEAS/DAR MEAS/DAR MEAS/DEGK MEAS/DEGK MEAS/DEGK MEAS/DEGK MEAS/DEGK MEAS/DEGK	TEMP 778.14 .17751 5.6302 .01241 80.5742 .16313 6.1302 533.721234	PRESS 507.12 20721 + 8251 + 8251 034.699 19031 5.2547	TEMP 583.86 .23679 4.2231 0.1655 50.4242 4 .21748 .21748	PRESS + 67 - 28 - 29596 - 02059 - 02059 - 02059 - 37589 - 37589 - 35389228	ACCEL 334.05 .41425 .2.4140 .02697 34.5170 .34047 2.6283	ACCEL 292.+3 .+7339 2.112+ .03311 31.1931 .+3478 2.3000	ACCEL 234.14 .59151 1.6903 .04140 24.1541 .54335 1.8404	ACCEL 150.43 . 89694 1.1275 . 05213 1c.3941 . 81460 1.2276	M SPEC 78.71 1.771ú7 2.2646 8.0342 1.62665 5.6148	M SPEC 59.29 2.39835 .4239 .16614 6.0192 2.16655 .4616	M SPEG 47.03 2.94200 .33395 .20789 4.4102 2.70336 33336	M SPEC 39.85 5.53103 .2632 .24373 4.0043 3.23901 .3.23901 26.99617

SECONDS AT 59900.000 KM RADIUS . SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. HJNOGRAPH SATURN JOHINAL ATMOSPHERE
BALLISTIC CJEFFICIENT = .700, INITIAL TIME =

BAL. COEF. 0.55/0.70/1.50 SEP 30 BARS

KAULJO		•	100 1110		, A	:		4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 K K C	340.443.63.	777		1
TIVE	2+15.605 40.27676 671279	S SEC 9 HIN	VELOCITY	190	METER/ MB/SEC FT/SEC	SEC	DY4 P DOPPLER MACH NO	0.002004 A .011620 B 4.218338E+ .048248	A I F B A K S + 0 2 C P S			• USY TANKENHE	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
INSTRUMENT NO OF HEAS KM/HEAS MEAS/KM BARS/HEAS MEAS/BAR DEGK/MEAS MEAS/BAR MEAS/BAR	IS SEE	TEMP 806.34 .17449 5.731 .01254 79.1291 .15862 6.3042	PRESS 591.46 6.20356 4.01174 67.8214 1.8505 5.4039	TEMP 605.15 • 23262 4.2968 • 01685 59.3406 • 21148 4.7286	PAESS +84.55 -23075 3.4394 -02107 47.4676 -25432 3.7338	ACCEL 346.23 •41697 2.4572 0.02950 33.8983 -36997 2.7129	ACCEL 303.08 • 46506 2.1503 • 03372 29.0579 • 42278 2.5653	ACCEL 242.60 .58120 1.7206 .04216 23.7214 .52837 1.8926	ACCEL 162.11 .87136 1.1476 .05327 15.8060 .79214 1.2024	M SPEC 31.55 1.7403 1.2673 7.8907 1.54145 6.322 55.52257	A SPEC 61.42 2.31764 2.4315 3.9915 2.10648 41.72327	A SPEC 2 - 64 4 3 3 2 - 64 4 1 5 4 - 2 1 1 5 5 - 5 2 1 5 6 - 6 2 1 6 7 - 6 2 1 6 7 - 6 2 1 6 8 - 6 2 1 6 8 - 6 2 1 6 8 - 6 3 1 6 8 - 7 6 1	M SPEC +1.2b 3.46947 .2882 .25425 3.9331 3.1540E .3171
RADIJS 5	59655.000 2503.307 41.72178	M WEN	ALTITUDE VELOCITY	DE -145.000 KV -475.722 KF -475.729 H -2915 H 147.562 F	1 TT 87.8E3 87.8E3 17.8E3) EC	DYN P DOPP-ER	7.341683 7.245678 .011620 4.145002E	BAKS ATR BARS +UZ GPS	TEMPERATUR	282	.173 KELVIN .241 FAHAENHEI	Z HE III
INSTRUMENTS NO OF HEAS NO OF HEAS HEAS KM BARS/ MEAS BEASS/ MEAS BEASS/ MEAS BEASS/ MEAS BEASS/ MEAS MEAS/ BEAS MEAS/ DEGK MEAS/ DEGK MEAS/ DEGK	S 2 10 10 10 10 10 10 10 10 10 10 10 10 10	TEMP 835.44 17145 5.8324 01287 77.7281 71.15581 6.4157	PRESS 716.23 716.23 + 9995 - 11501 65.666 • 18184 5 + 9994 89.608394	TEMP 626.83 4.3748 4.3748 01716 58.2012 4.8122	PAESS 501.65 3.28570 3.51002 46.5275 46.55973 3.8502 2.8239724	ACCEL 358.62 2.3950 2.5005 .03003 33.2985 .36355 2.7507	ACCEL 31431 2.45699 2.1689 29.1689 29.1689 3.41684 3.41684 11.341071	ACCEL 251.33 .57112 1.7511 .04291 23.3020 .51920 1.9260	AGCEL 167.089 1.167.9 0.06440 15.05440 17.3566 17.3847 14.49249	M SPEC 84.044 1.70996 .5848 .12908 7.7908 7.7917 1.55451 .0433	A SPEC 63.58 2.27769 .+330 .17218 5.4030 2.07063 .+829 .43.13628	A SPEC 2 61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M SPEC 4.2.72 3.40963 .2943 3.09647 3.09645 3.09645 3.09645
ADIJS 9	9550.0 2591.5 43.192	X NEI	i i	-150.00 -492.12 56.19 4.357 184.35	KN KFT METER/ MB/SEC FT/SEC	SEC JOH	RESSURE DYN P DOPPLER MACH NO	7.723268 7.622273 .011620 4.0740706	BARS BARS + DZ CPS	TEMPERATURE	RE 285.716	18 KCLVIN 23 FAHRENHEIT	
INSTRUMENT NO OF MEAS KH/NEAS MEAS/KH BARS/HEAS MEAS/BAR MEAS/BAR MEAS/BAR	بە.	TEMP 864.84 •16852 5.9339 •01309 76.3732 •15320 6.5273	PRESS 7+10-64 19660 7-19660 65-4595 65-4595 9-5951	15MP 648.88 • 22468 4.4509 • 01745 57.2743	PRESS 519.31 • 28082 3.5610 • 02163 45.8149 3.9173	ACCEL 371-22 •39307 2•5441 •03055 32-7185 •35733	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ACCEL 250135 .56135 1.7814 .04368 22.84568 .51033	ACCEL 174.027 1.14464 1.14462 15.25554 1.70513	1.080.08 1.080.08 1.080.08 1.080.08 1.080.08 7.0817.08 1.080.08	A SPEC 65.79 2.23940 .17921 5.7074 2.03546	2.59EC 2.795.083 2.795.09 2.457E 4.51453 2.51195 2.51195 3.41915	M SPEC 44.19 3.5512 3.5512 .2633 3.7976 3.04736

SECONDS AT 59900.000 KM KALIUS SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONGRAPH SATURN YOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

• BAL. CJEF. 0.55/0.70/1.50

SEP 30 BARS

RAULJS 59645.000 KM	•	ALTITUDE	-155.00	X	PRESSU	SJR6	8.118260	1 3	TIMPERATURE	JRE 251.2	1 0	
TIME 25.81	77	VEL OC 1TV	-508.530	X=1			.012120	417		p++p	OD FAARENHEIT	HEIT
1	4.58795 MIN .7+4793 HRS	•) • 	M3/SE3 FT/SEC	DOPPER DOPPER MACH N	PP ER	. Ulibeu : 4.OC5428E4 .O44727	4 12 CPS				
INSTRUMENTS	TEMP	G.	TEMP	PRESS	ACCE.	4 00	ACCEL	ACE	7. G.	Sid?		1 2 3
NO OF MEAS	894.75	767.08	071.32	537.26	384.0+	330.16	269.13	179.75		00.00		
KM/ME AS	.16258	.19329	.22089	.27509	.38645	. 4+152	.55192	. 82756	1.55209	2.23155		3.29524
MEAS/ KM	6.0356	5.1736	4.5271	220	2,5875	2 + 20 + 4	1.8119	1.2085	.6021	* +5+5	'	3034
BARS/ MEAS	.01332	•		221	.03110	. 3355+	44440.	.06659	13350			.26788
MEAS/ BAR	75.0519	ĕ	.2911 4		-	25 . 13+9	22.5037	14.3954	7.4871			. 7.3
DEGK! MEAS	.15002	.17		96	132	.401+7	.50175	.75227	1.50244	•	~	96965.
		•	4.9738		2.8464	2.4338	1.9930	1,3293	. 665.0		1001	3333
MEAS/ PSCHT 5	09.873+6	522, 79539457	. 48584366	.05485261	.5611322	+4	83.150811	22.23605	51.28104	46.34214	36.03870	30.60300
RADIJS 55640.000	NX 000 C	ALTITUDE	-150.000	•	PRESS	33.J.R.L.	8.526977	DAKS.	TEMPERATURE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			-524.934				. 415472	-		22		11 4
TI4E 2772	SEC DEG.	VELOCITY	54.327		ں	٩		JARS				
40.2	46.20917 MIN . 770153 HRS		4.5183		DOPP.	×c	936968E	+				
		•			•	2	1					
INSIAUM:NIS	E : 1	PRESS	E P	PAESS	◂	ACGEL	ACCEL	ACCEL	M SPEC	M SPEC	M SPEC	M SPEC
NO OF MEAS	925.18	7 3 3 • 15	94.14	555.51	397.08	3+7.57	278.26	185.64	35.42	70.31	56.45	47.21
NATE AND A PERSON	16291	90061			.38005	• +3+30	.5.278	. 61340	1.02541	2,16527	2.10+17	3.24211
	C 1 3/ 3	2.5000				2.3425	1.8+24	1.2236	.0122	. +010	3555.	.3084
GARN MEAN	.01332	. 1261	. 01847		.03163	.03012	•	.00783	.13585	.14133	. 22543	.27244
240 7400	526.46	2 247.50	4	7)	1.613/	27.6535	22.1235	14.7423	7.3511	5.5158	4.4086	3.6702
	71841	16271	19748			33432	.4534+	.73982	1.+776+	1.908+3	2.42353	2.94737
AST DEG K	1147.0	2.7859	0.0538	514	'n	2.5328	2 • 0265	1.3517	.6704	0616.	3004.	.3343
MEAS/ PSCHT 5	Ň	39.81144472	. 37587377	.95607270	.0691+23	ó. 3213418	39.1404112	20.230+4	53.20623	47.53134	38.00343	31.79561
RADIJS 39535	. 000 KM	ALTITUDE	-165.000		PRESSAR		8.949615	3485		26 300 455	41 V X	
			33	K=1		1	832584	ATE		,		11.11
TI4E 2865		VELOCITY	23.439		N.O. D.Y.	۵.		3 AKS		,		-
	47.75585 MIN		4.5941	7.9×	9300	JPP_CK 3	ŧШ	+02 CPS				
•79			175.325	FI/SE	AAG	0	.042605					
INSTRUMENTS	TEMP		٥		A C C	ACCEL	ACCEL	ACCEL	M SPEC	A SPEC	N SPEC	M SPEC
NO OF MEAS	956.12	319.67	17.34			359.17	287.54	192.02	30.21	72.03	~	48.76
KHIMEAS	.16023	.18698		.25708	.3738+	. 42721	.53392	.80053	1.53898	2,15011	2.00034	3.16955
MEAS/ KM	6.2393	5 . 3 + 82				2.3+37	1.8729	1.2492	. 5254	ceo+.	.3759	.3135
BARS/ MEAS	.01378	. 11618			.03217	.03577	.04597	. u589e	.13814	. 18435	.23004	.27702
MEASTBAS	72.5525	62,1937	-3	M	1.0872	7.1939	21.7553	14.4971	7.2389	2 . + 2 + 4	4.5357	3.6093
DEGK/ MEAS	.14570	16998	. 19+26		33985	.38438	.48538	.72776	1.45301	1.936+7	2.41449	2.89968
	6.853	5.8830	5.1478	118t	2.9424	æ	'n		£ 28 C .	.5164	.4135	.3449
MEAST PSCHT 5	49.305715	57.13959487	.51175390,	.07*77278	8.71820243	, 9132719	95.2007+13	30.24265	05.2343+	49.04452	39.30070	32.80467

SECONDS AT 59900.000 KM RADIUS • SURVIVABLE SATURN PRUBE TASK 4 DESCENT RUNS JP. MONOGRAPH SATJRN VOMINAL ATMOSPHERE BALLISTIC CDEFFICIENT = .700, INITIAL TIME =

8AL. COEF. 0.65/0.70/1.50 SEP 30 BARS

TIME 2955	2959.664 SEC 49.32806 MIN .822134 HRS	VELOCITY	-537.743 f 52.579 +.6701 172.502	METER/ MB/SE3 FT/SEC	SEC	DYN P 300PER MACH NO	9.263710 4TM .011620 BAR 3.812194c+02 .041507	ATH BARS :+02 CPS		89.1	1.130 FAARENHEI	LI JHX
INSTRUMENTS NO 0° MEAS KM/MEAS MEAS/KM MEAS/BAR MEAS/BAR DEGK/MEAS MEAS/PSCMT 3	TEMP 987.55 • 15770 6.3413 • 41401 71.3707 • 14335 6.9755	PRESS 3+6.62 14397 14397 11635 61.11635 61.11635 16725 5.9792	TEMP 740.92 •21024 6.7564 •01468 •19113 5.2320 2.894754	PRESS 592-44 .26276 3.8054 .02336 42.8150 .23489 4.1860	ACCEL 423.81 .36783 2.7185 .03270 30.5769 .33439 2.9905	ACCEL 370-30- • 42034- 2-3730 • 43738 25-7525 - 38213 2-6159	ACCEL 296.97 .52534 1.5035 .04673 21.3983 2.0939 201.353921	ACCEL 199.31 .78767 1.2696 .07013 14.2994 .71607 1.3965	M SPEC 39.66 1.57335 .6376 7.14044 7.1265 1.43032 65991	A SPEC 74-99 2-09603 -4771 5-3358 1-9099 50-58248	A SPEC 60-19 2 - 01784 - 03820 - 12694 2 - 37986 - 12050 - 12050 - 12050	M SPEC 50.33 3.13878 .3185 .28160 3.5511 2.85344 .3505
RADIJS 59625.000 TIME 3355.548 50.32580	3055.548 SEC 50.32580 MIN 648763 HRS	ALTITUDE VELOCITY	-175.000 -574.147 51.744 4.7452 169.765	KN KFT METER/ MB/SEC FI/SEC	SEC	PRESSURE DYN P DOPPER	9.837753 9.709107 0.011620 3.7516956	JAKS ATE BAKS +02 GPS	TEMPERATURE	JRE 309.445 97.332	45 KELVIN 32 FAMRENHEIT	
UMENT MEAS AS KM KM MEAS BAR MEAS DEGK	101 • 10 • 0 • 0 7 0 • 1	PRESS 174.01 18105 18105 101662 60.1618 16459 16459 16459 16459 16459	764.689 .20691 .20691 .01699 .2.6569 .131610 .5.31610	PRESS 612-11 .25861 .02374 42-1220 .23510 .25510 .25510	ACCEL 437.51 .3620 2.7624 .03324 30.0821 3.32909 3.40112	ACCEL 382.94 .41338 2.4173 .03799 25.4197 .37617 2.65917 2.65917	ACCEL 366.55 .51702 1.9342 .04750 21.6943 .46943 2.1390	ACCEL 204-76 77520 1.2930 1.0290 1.0290 1.9326 1.4336	M SPEC 10.5.85 1.5.46.6 .0458 .14274 7.0057 1.37442 09.11878	A SPEC 2.05240 2.05240 3.14444 5.2498 1.82498 1.82498 1.82498	M SPEC 2.576+9 2.576+9 2.576+9 1.1963 2.27963 2.27963 1.1.78044	M SPEC 51.933 3.08923 3.8020 3.4940 2.7722 2.7722 34.87072
RADIJS 59620.000 KM TIME 3152.958 SE 52.54930 MI .875822 HR	3152.954 SEC 52.54930 HIN 675822 HRS	ALTITUGE VELOCITY	-140.000 -590.551 50.923 4.8356 167.071	KA KTT METER/ M9/SEC F1/SEC	SEC.	PRESSURE 1 DYN P COPPLER MACH NO	10.303868 9A 10.169127 AT 011652 8A 3.692162£+0	9AKS ATh BAKS +02 CPS	TEMPERATURE	JRE 313.850 103.260	50 KELVIN 60 FAHRENHE	
INSTRUMENTS NO OF MEAS KM/ME AS MEAS/KM BARS/MEAS MEAS/BAR MEAS/BAR MEAS/BAR	1031.39 .15273 .15273 6.5474 .0149 69.0779 .13400	PRESS 301.85 5.6123 5.6123 53.2072 53.2072	789.24 • 20363 • 5110 • 5110 • 1 6041	PARESS 6 201-59 6 201-51 3 29291 6 102413 41 44399	ACCE: 451.42 .35625 .2.8069 .2.8379 29.5951	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A D C C E L	ACCEL 211.20 .70292 1.3108 .07245 13.3026	M SPEC 106.10 1.52398 6562 6.8929 1.33766	M SPEC 79.82 2.03034 .19351 5.1651 1.76211	A SPEC 04.05 2.53586 3.3453 4.1267 2.22584	M SPEC 5.04061 3.04061 .29096 3.4378 2.66887

SECONDS AT 59960.000 NM RACIUS • SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN 10MINAL ATMCSPHERE
BALLISTIC CJEFFICIENT = .700, INITIAL TIME =

BAL. CJEF. 0.65/0.7u/1.50 SEP 50 34/3

RADIJS 39615	9615.000 KM	ALTIT UDE	-135	1	PRE	PRESSJRE	10.785213	BAKS	TEMPERATUR	1 5	£ \$ 3	
TI4E 3251 54.1	3251.933 SEC 54.19883 MIN	VELOCITY	0.0 +	METER/ MB/SEC	SEC	DYN P DOPPLER	10.644178 4TF .011652 3AK 3.634279L+02	ATE JAKS :+02 GPS		113.15	154 FAHKENHE	TIZH
•			101	-		z Z	. 138825					
INSTAUMENTS	TEMP		MEN.	PRESS	ACCEL	ACCEL	ACCEL	ACCEL	M SPEC	M SPEC	H SPE	M SPEC
NO OF MEAS	103+.98	350.12	₩ 1	051.39	463.55	+07.+9	326.19			82.30	000	55.20
SA LEVEN	.15054	•		.25052	• 350b8	. +0075			•	1. 33835	2.49641	2.99336
	6.6515			3.931c	2.8515	204954				.0033	7	•
BARS/ MEAS	.01471	•		. 02452	.03434	. u3925				.13074	•	29882
MEAS/ BAR	67.9726	53	'n	+0.7771	29,1213	25 - +73 5		_		5.0879		3.3832
DEGK! MEAS	.13195	•	. 17593	.21990	.30781	. 35175		65917	1.31678	1,75433	20001	2,62739
				4.5476	3.2463	2.8429			'	570	1000	
MEAS! PSCHT ?	33.59912	28.	550.2803544	0.299083	14.5847527	5.30215	220.306481	146.97888	73.55108	95	44. 51305	36.98674
RADIJS 59510.000	. 003 KM	FOR TITE IA	105 -130 000	X X	. ca	7 30 07 00	11 20222	0 3 4 6		-	•	
		1	-623.35				1.13) (LA		121.	DEG FAMPENHETT	HF 1.1
TIME 3352	3352.460 SEC	VELOCIT	¥ +9.35	METER/	SEC	9 770		SANS				
55.9	7 ttt MIN	•	.932			P.P. ER	3.578070	+02 CPS				
. 93	1241 HRS		. 30	m		4ACH NO	.037963					
INSTRUMENTS	TEMP	55356	QM-1	22.360	ACCE	12000	1000		0	0	4	1
A PER POOL	9111		4 0 2 7	2	1000		1000	. נ נ נ	3 .	בי	10 LO L	מיייר בי
KM/M% AS	11011	•	10336	0 4 4 4 4 5 0 7 7 7 7 0	26 06 74	00.02+	62.000	060+27	112.75	0+•41	£6.05	56.37
MEDSEKM	7.7.6		10 KT -	1 to	0.4000	004000	7766+•	DODO - 1	60//+•T	1. 43/40	20024.7	2.94746
BARY MEAS	100	`	× 00 + 0	1000	+0.00.0	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.70.0	1.3565	0//0.	.2001	20 C	. 3393
ME ACA BAS	2004 77	• 1		70470	F0400.	000000	007100	194/0	6/6+1•	• 13938	. 25 0 64	•30028
DEGKAMEAN	00001			100101	7700 •07	6770.62	6960 • N Z	13.36/4	60/0.0	5.0031	3. 49.44	3.3302
	7 6 67 2	•	1 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0017		2010		U. 0+0.	0.0962.1	1. (2/32	2.12/55	н
٠	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0150.0	2000	101100	3.6298	2.0872	2.3104		.7713			• 38
_	66292•66	047.414565	65 • 5 262 445	3.287353	23.8692526	83.426382	26.805621	51.31163		56. 3 4379	45.61951	38.06993
				١,								
60 66 6	•	# F I I ODE	-135.00	F 12 Y 2 1	74	PAESSJRE 1	11.794730	LARV	TEMPERATURE	327.		
TIME 3454		VELOCITY			Ü	1 d N.A.O	011052	A A K S		160.5	29 FANKENMELI	- 1 36
			.11		20	OPP.ER	5234625	+u2 3PS				
. 95 96 03	9603 HRS		159.437	7 FT/SEC	AAC	ACH NO	. 037132	; ;				
INSTRUMENTS	TCMP	PRESS	TEMP	PRESS	ACCEL	AGSEL	ACCEL	Acce	J. d. A.	O'CO	E GO	Q.
NO OF MEAS	1152.52	4.8	864.04	•	101	1 42.42	346.46	241.30	1 4 5	- 7	9 2 2) 1 1 1 1
KM/ME AS	.14570	•		24284	34000	30000	48550	. 72H13	1.154.1	0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000
MEAS! KM	6.8508			4.1171	2.94.12	2.5747	2, 5,03	4 67 24	1000	0000	3007	000000
BARSIMEAS	011518			12531	10.4544	1001	06.033	075.04	0.000	30100	1014.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MEAS/ BAR	55.4007			39.5080	28.2158	24.685.4	19.7456	13.1594	5.570.5	3 11 10 10 10	160000	
DEGK! MEAS	12794	•	17057	.21320		34114	4.26.23	5.5411	1.27680	1.70114	0.101.0	3 5 6 7 90
MEAS/ DEGK	7.8154	5.7600		30000	4, 45.00	2.922	2 · 4 · 5 · 6	1000	7 9 2 3	1770	20131.3	•
MEAS/PSCHT 7		27036	1	~	33.2971329	1.575+72	10401	7117	78 04724	1001	0.47	4255
•		•		•	1	1	1010100	3044		•	7+606 00+	

0. SECONDS AT \$9900.000 KM RADIUS SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. HONOGRAPH SATURN NOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT * .700, INITIAL TIME *

SEP 30 BARS

KAULJ 3 33		į		-656,168	KFT		14000	12,162320	ATR		136.85	58 FAHRENHE	NHEIT
TIVE	3555.249 59.30415 988403	SEC	VELOCITY	5.149 5.149 157.03	METER/ MB/SEC FT/SEC	SEC DIC	DYN P DOPPLER MACH NO	. 011652 .470391 .036330	- 4			2	
INSTRUMENTS NO OF NEAS NEAS/KH HEAS/KH HEAS/BAR NEAS/BAR NEAS/BAR NEAS/BAR NEAS/BAR	S	0.00.00.00.00.00.00	PRESS 1017-64 16746 16746 01799 55-5780 14701 14701 5-8024	TEMP • 19140 • 5.2246 • 02056 • 6.6289 • 16801 • 15801 • 16801 • 16801	PRESS 712.655 . 23924 . 1800 . 02571 38.9003 . 70999 9.0065734	ACCEL 509.32 .33488 2.9861 .03599 .27.7819 .29394 .3.4021	ACCIL 445.78 • 38259 2.6131 24.3073 24.3073 2.3073	ACCEL 356.82 • 47630 2.0908 • 05143 19.4430 • 41982 2.0802 2.06183	ACCEL 238.22 .71719 1.3943 .07718 12.9573 .62950 1.58950	M SPEC 119.61 1.43282 .6979 .15452 6.4715 1.25764 .7951	M SPEC 09-96 1-90905 -5238 -26518 4-8501 1-67565 60.26866	M SPEC 72.16 2.38+60 .4194 .25791 3.8772 2.6978 48.27942	A SPEC 60.30 2.65948 .3497 .30972 3.2287 2.50986 40.26653
RADIJS 595 TIME 36	3563.502 S 61.05836 H	KA SEC MIN HRS	ALTITUDE VELOCITY	-205.000 -672.572 47.153 5.2277 154.701	KA KFT METER/ M3/SEC FT/SEC	SEC DE	DYL P DYL P DOPPLER HACH NO	12.868581 8 12.700302 A .011652 8 3.418792E+	BARS ATH BARS E+02 CPS	TEMPERATURE	IRE 335.7	1 m w	KELVIN FAHRENHEIT
INSTRUCENT NO OF HEAS KH/HEAS MEAS/KH BARS/HEAS DEGK/HEAS MEAS/DEGK MEAS/DEGK	82	1 00 to 0 1 m 1 m	PRESS 1347-71 16499 5.0608 01627 5+1736 14482 5-9050 04.84427615	TEMP 916.08 1.18856 7.08086 1.08980 1.08980 6.0421 6.0421	7 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ACCE. 524.35. 32991 3.0312 03655 27.3600 3.4534 2.58405	ACCEL 458.94 2.457.01 2.6525 3.04177 23.932 3.0219 3.0219	ACCEL 367.35 .47120 2.1223 .05223 .9.1479 2.41359 2.4179 246.905961	ACCEL 245.23 .70554 1.4153 .07837 12.77837 12.77837 12.77837 12.77837	M SPEC 123.12 1.41160 1.7084 1.5690 1.23902 1.23902 82.51753	M SPEC 92.59 1.88182 .5317 .28935 4.7768 1.65087 61.96885	N SPEC 2.34.927 2.44.938 3.261.93 3.061.93 2.0621.44 49.63956	A SPEC 62.05 2.04530 3.31447 3.31447 3.41447 3.41447 41.41999
ADIJS 5 TI4E	90 • 0 70 • 3 • 838 0473		ALTIT UDE VELOGITY	-210.000 -686.976 46.451 5.3065 152.430	KFT KFT METER/S MB/SEC	5 O E	ESSJRE DYN P OPPLER ACH NO	13.254724 13.254724 011652 3.3586086	BARS ATM BARS E+02 GPS	TEMPERATURE	IRE 340-182	82 KELVIN 58 FAHRENHE	N HE II
INSTRUMENT NO OF MEAS KM/NE OF MEAS MEAS/ WEAS BARS/ MEAS MEAS/ MEAS MEAS/ MEAS	S S		PRESS 1370-24 • 16257 6•1511 • 01855 53.9125 • 14270 7 • 0079	TEMP 943.56 • 18579 • 02120 7.1718 • 16308	PAESS 755-07 -255-07 -230-22 -026-50 37-7348 -20383 +990-60	ACCEL • 32507 • 32507 • 03711 26.9497 • 28532 3.59497	ACCEL 472.20 2.6591.9 23.5794.23 3.55794.32596	ACCEL 378.03 • 46429 • 1538 • 05302 • 60752 • 40752	ACCEL 252.36 .69619 1.4364 .07956 12.5695 .61108	N SPEC 126.68 1.39096 1.7189 1.5928 6.2782 1.22090	M SPEC 95.26 1.85335 .5336 .21252 4.7154 1.62676	N SPEC 76.41 2.31511 .4319 .26583 3.7617 2.03207 .4921	A SPEC 63.04 2.77626 3.1562 3.1326 2.43643 2.43643

SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN VOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

SECONDS AT 59900.000 KM RADIUS •

SEP 30 BARS

	M SPEC 65.65 2.73631 3.3555 3.0865 2.40177 2.4164	H SPEC 67.48 67.48 697.43 3.0416 3.42877 3.42877 9.2136	HEII M SPEC 69.34 2.65953 3.3356 2.33439 2.33439
KELVIN FAHRENHEIT	SPEC 76-57 28177 28177 26981 00280 00280 42043 4	59 KELVIN 57 FAHRENNE 8 SP EC 2 .24930 2.24930 2.27380 3 .27380 1 .97430 2.27380 1 .97430 2.27380	SPEC 83.01.00 20.0
344.571	SPEC # 82662 2.5475 21570 .6330 2.44492 52.44492 52.44492 52.44492 52.44	1448.9 1648.9 1648.9 1689.9 1889.9 1889.9 1889.9 1889.9 1889.9 1889.9 1889.9 1899.9 18	353.348 176.357 SPEC 03.51 25633 52209 5909 6418
ERATURE	SPEC H 0.29 7.087 1. 7.295 6.167 1855 4 0.327 1. 8.311 5.230 65.	ERATION E E E E E E E E E E E E E E E E E E E	PEC
16.4	0 v t m m m m m m	! ⊢ ∞ !	· - 6
BAKS ATH BAKS E+02 CPS	とうよう アラスロル	### ### ##############################	BARS BARS BARS C+02 CPS ACCEL 274.36 66677 1.4998 12.02315 15.0252 15.0252 15.0252
4.009065 BAKS 13.825872 ATH 011652 BAKS 3.319782E+02 CF		14.605019 8/ 14.414033 4/ 14.414033 8/ 3.272260E+ 3.272260E+ 3.93333 ACCEL 3.99.87 3.45102 2.45172 18.3088 2.5560 2.57.91429178	5.218505 3.2259916 3.2259916 0.032706 4.1465 2.2489 2.2489 3.3902916 3.3902916 2.5622 2.5622
DYN P DOPPLER MACH NO	ACCEL +85.84 •36610 2.7315 •04305 23.2301 •32134 3.1120	10 P P P P P P P P P P P P P P P P P P P	AESSJÆE 1 DYN P DON P DOPPLER ACCEL 5 513.54 2 .3557 2 .4108 8 .04433 7 .22.5593 6 .31.22 5 .31.22 6 .31.22 5 .40.83
SEC P	ACCE. 555.11 .32035 3.1215 .03765 26.5507 .28119 3.5563	ACCE 570.8 53157 3.157 3.0382 26.162 3.2771 3.2771	ACCE 586.7 3.3113 3.212 3.212 3.213 25.783 3.659
METER/ METER/ WB/SEC	PRESS 775.75 .22886 4.3695 .02690 37.1757 .20088 4.9781	MAJSEC MA	KM METER/ METER/ METER/ METER/ FT/SEC MEZSS MEZSS MEZSO MEZSS
-215.00 -705.38 45.73 5.385 150.22	TEMP 976.69 • 18310 5.4615 • 02152 • 16371 • 16371	-220.00 -721.00 -75.13 5.464 148.07 148.07 15.469 1988.19 998.19 998.19 18048 5.7925 6.3101953	-225.00 -738.18 44.49 5.543 145.97 126.08 0.177.93 5.6206 5.1302 6.4031
ALTITUDE VELOCITY	PRESS 1109.21 .16022 5.2415 .0138 53.1136 4 .14663 7.1119	ALTITUDE VELOCITY PRESS 1140.64 1.15793 5.3321 92.3360 7.2141 64,86824669	ALTITUD VELOZIT PRESS 1172-52 5-4229 5-4229 6-11939 51-5790 7-3375 5-4549968
.060 KM .745 SEC 4574 MIN 7429 HRS	TEMP 1233.91 .13733 7.2415 .11914 61.9679 .12154 8.2958	KA MIN MIN MIN MIN MIN MIN MIN MIN MIN MIN	SEC MIN MIN HAS 1.74 1.71 1.71 1.71 1.71 1.71 1.71 1.71
RADIJS 59585.000 TIME 3873.745 64.54574 1.077429	INSTRUMENTS NO OF MEAS KM/MEAS MEAS/KM MEAS/KM MEAS/MEAS MEAS/MEAS MEAS/MEAS MEAS/MEAS MEAS/MEAS MEAS/MEAS MEAS/MEAS MEAS/MEAS MEAS/MEAS	ADIJS 79560 TI4E 3969 TI4E 3969 NSTAUMENTS O 0" MEAS MANHAS EAS/ MEAS EAS/ BAA EAS/ BAA EAS/ PEAS EAS/ PEAS EAS/ PEAS EAS/ PEAS	TIME 4103.325 08.33875 1.138979 INSTRUMENTS T NO MEAS 1367 KM/MEAS 1367 MEAS/MEAS 11631

0. SECONDS AT 59900.000 KM RADIUS SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JPL MONOGRAPH SATURN NOMINAL ATMOSPHERE
BALLESTIC CJEFFICIENT = .700, INITIAL TIME =

SEP 30 BARS

1.1704	417 HRS	VELOCITY	43.87 5.623 143.93	KF! METER/ NB/SEC FI/SEC	SEC	DYN P DOPPLER HACH NO	3.180929E 032051	AIN BARS + DZ CPS		184.2	255 FANKENMELI	WEIT
INSTRUMENTS NO OF MEAS 1 KM/MEAS MEAS/KM BARS/MEAS MEAS/MEAS MEAS/MEAS MEAS/DEGK MEAS/DEGK MEAS/DEGK MEAS/DEGK MEAS/DEGK MEAS/DEGK	TEMP 1403-50 13159 7.5993 .01689 59.3172 .11550 6.6578	PRESS 120486 115352 5.5136 01967 53.8417 7.4212	.0	PAESS 843.70 • 21929 • 1929 • 19248 • 19248 • 52948 • 52943 • 52943 • 52943	ACCEL 602.93 .30697 3.2575 .03935 25.4153 .26944 3.7114	ACCEL 527.59 . 35030 2.8508 . 04497 .22.2370 .3.2477 52.95262	ACCEL 422.35 .43845 2.43845 2.5808 17.7874 .38485 2.5984 82.426521	ACCEL 281.90 .65747 1.5216 .08436 11.8546 .57709	M SPEC 141.45 141374 16187 16887 5.9217 1.15312 94.35765	A SPEC 106.34 1.756.34 1.756.34 1.710.3 1.710.3 1.76.3 1.7	A SPEC 2.1656.27 2.1656.27 3.261.80 3.5486 1.91951 3.5210 56.74364	# SPEC 71.5262 2.62263 3.3813 2.9554 2.30201 47.34005
RADIJS 59565.0 TI1E +323.2 72.137	268 3EC 780 MIN 297 HRS	ALTITUDE VELOCITY	-235.00 -770.99 43.26 5.703	K4 KFI METER/ MB/SEC FT/SEC	JE C	RESSJRE 1 DYN P DOPP_ER	6.499248 6.283492 011652 3.137026	BARS ATM BARS E+02 OPS	TEMPERATURE	362. 192.	.156 FAHRENHEIT	HE I
INSTRUMENTS NO OF MEAS NAME AS HEAS/KM BARS/HEAS MEAS/BAR BEAK/MEAS MEAS/BAR MEAS/BAR MEAS/BAR MEAS/BAR MEAS/BAR MEAS/BCGK MEAS/BCGK MEAS/BCGK MEAS/BCGK MEAS/BCGK	1EMP 443.76 •12978 •12976 •01710 8.4792 •11391	1237.653 1237.653 15140 15140 15140 15140 13123 17.5530 17.5530	1083.07 .17302 .7795 .02280 .43.6567 .15187 6.5846	PAESS 663.655 . 21627 4.5239 35.02850 35.2680 9.346693	ACCE. 619.32 .30274 .03991 25.0364 .25.0564 .26.573 3.7633	ACCEL 54203 34537 2.8935 1.0455 21.953 3.2931 62.213032	4300 EL 4300 E	ACCEL 289.55 .64841 1.3422 08556 11.6873 .56914 1.7570 93.33123	M SPEC 145.286 1.29566 .7718 5.17128 5.8383 1.13726 .8793	N SPEC 109-21 1.72652 .5792 .22651 4.3764 1.51544 .6599	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	M SPEC 73.14 2.58670 3.4319 2.27845 48.57481
ADIJS 59560. TIME 4444. 74.07	A SHIP		-240.00 -787.40 42.67 5.782 140.01	O KM 2 K=T 6 METER/ 8 M3/SEC 5 FT/SEC	SEC DO	SSJRE DYA P PPLER CH NO	17.167098 16.942608 .011652 3.094241E	BARS ATM BARS +02 CPS	TEMPERATURE	366.5 200.0	14 KELVIN 56 FAHRENHEIT	HEIT
INSTRUMENTS NO OF MEAS 1 KNYMEAS MEASY KN MEASY KN MEASY NEAS MEASY NEAS MEASY NEAS	TEMP 1482.54 12801 7.8121 01734 57.6625	PRESS 1270-90 • 14934 5 • 6963 • 02023 43 • 4235	1112-16 • 17067 5-8594 • 02312 +3-2443 • 14980	PRESS 889.93 .21332 4.5878 .02891 34.5934	ACCEL 635.95 .29861 3.3488 .04047 24.7065	ACCEL 556.58 .34125 2.9304 .04626 21.6170	ACCEL 445.46 •42651 2.3465 17.2916 •37437	ACCEL 297.31 .63959 1.5635 .18677 11.5243	M SPEC 149.15 1.27805 1.7824 17370 5.7570	M SPEC 112.12 1.70308 .5872 .23174 4.3152 1.49486	M SPEC 89.89 2.12761 .4700 .26984 3.4501	A SPEC 75.08 2.55165 3.4802 2.8734 2.23968

SURVI VABLE SATURN PROBE TASK 4 DESCENT RUNS JP. HONOGRAPH SATURN YOMINAL ATHOSPHERE

RADIJS 59555	. 000 KM	ALTITUDE	-249		PRE	SSJRE	.853663	BARS	TEMPERATURE	370.		
TIME 4562 76.0	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			KFT HETER/S MB/SEC FT/SEC	EC 30	DYN PP.ER	620196 011652 052531E 030206	ATH BARS +02 CPS		207	S FAHRENHEIT	не 1.1
INSTRUMENTS NO OF MEAS KM/MEAS MEAS/KM	TEMP 1521.87 .12628 7.9188	PRESS 1304.60 .14732		PRESS 913.52 .21045	ACCEL 652.80 .29459	ACCEL 571.32 .33656 2.9704		ACCEL 305.17 .63098	M SPEC 153.09 1.26088	N SPEC 115.06 1.68022	M SPEC 92.25 2.09908	77.04 2.51747
ν ν¥Ε Ε	. m + m .0	43.7652 43.7652 43.7652 12931 7.7332 70.708177	6.7667 6.7667 6.7667 1.91010609	4 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	.0410+ .0410+ .25857 3.8674 5.515873	. 04631 21.3187 . 29350 3.38+1 81.11633		11.3654 11.3654 .55383 1.8056 03.413231	17613 5.6778 1.10672 .9036 01.86815 7	6 12	.29388 3.4027 1.84245 1.24992	35286 2.8340 2.20968 .4526 51.09529
013S 59550 TIME 4682 78.0	163 SE 606 MI 601 HR	ALTITU VELOCI	183 183 133 133	K4 K=T METER/S M3/SEG F1/SEG	<u>.</u> 0.	SSJRE DYN P PPLER CH NO	18.559244 18.316550 .011652 3.011857E	BAKS ATh BARS +02 CPS	チ	215.85	12 KELVIN 15 FAHRENHEIT	HE I T
INSTRUMENTS NO OF MEAS KHYMEAS HEAS/KM HEAS/KM HEAS/ BAR DEGK/MEAS HEAS/ DEGK	5MP 450 450 257 783 930 937 436 436	PRESS 1338.76 14536 5.8794 02080 43.0758 12759 7.9376	TEMP 1171.54 16612 6.013 0.0377 42.0651 14581 6.8581	PAESS 937-43 20764 4.8160 0.02972 3.6502 1.8226 5.4868	ACCE. 669.88 .29067 3.4404 .04161 24.0332 .25513 3.9195	ACCEL 586.27 33217 3.0105 21.0278 221.0278 3.4298 3.4298	ACCEL 469.22 • 41517 2.4086 • 05945 16.8204 • 36441 2.7441 312.672882	ACCEL 313.14. 62258 1.6062 08926 11.2104 .54647 1.8299	H SPEC 157.07 1.24413 1.2856 1.0856 1.09202 1.09202 1.09202	M SPEC 118.05 1.05792 .6032 .23821 4.1980 1.45522 .6872 8.41046 0	M SPEC 94.64 2.07126 .4828 .29793 3.3565 1.8102 1.5500 2.79285	M SPEC 79.04 2.48414 .4026 .35772 2.77955 2.77955 2.77864 .55864 .5586 .
RADIJS 59545. TIME 4803.	.000 KM .335 SEC 5559 MIN 4260 HRS	ALTITUDE VELOCITY	255.000 -836.614 Y 40.993 5.0234 134.491	KA KFT METER/ M9/SED FT/SED	SEC DOI	DOPPER 1	19.284143 E 19.031969 A 011652 E 2.972182E 029069	ARS TH SARS 02 GPS	TEMPERATURE	379.68	O KELVIN 4 FAHRENHEIT	HE IT
INSTRUMENTS NO OF MEAS KH/MEAS MEAS/KM BARS/HEAS MEAS/ BAR DEGK/MEAS	1602 111 • 12296 8 • 1324 • 01307	PRESS 1373.38 14345 3.9712 02109 47.4258	TEMP 1201.83 .16394 6.0999 .02410 41.4973 3	PRESS 961.67 .20491 4.8802 .03012 3.1960	ACCEL 687.19 .28684 3.4862 .04218 23.77083	ACCH • 32730 3 • 0506 3 • 0506 • 07821	ACCEL 481.33 .40971 2.4408 .06026 16.5934	ACCEL 321.22 .61439 1.6276 .09042	M SPEC 161.11 1.22779 .8145 .18099 5.5251	N SPEC 121.08 1.63617 .6112 .24146 4.1415	A SPEC 97.07 2.04411 3.4499 3.3114	A SPEC 81.06 2.45161 .4079 .36258 2.7580

• SURVÍVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN VOMINAL ATMOSPHERE
BALLISTIC CDEFFICIENT = .700, INITIAL TIME =

SEP 30 BARS

BAL. COEF. 0.65/0.70/1.50

SECONDS AT 59900.000 KM RADIUS

******			-653.018	T-X			19.766751	ATM		231.654	4 FAHRENHEIT	HEIL
TIME 4926. 82.1 1.35	4926.116 SEC 82.10193 MIN 1.358365 HRS	VELOCITY		METER/SE/ MB/SEC FT/SEC	O	DYN P DOPPLER MACH NO	·	BAKS +02 CPS				
INSTRUMENTS NO OF MEAS KHTMEAS MEAS/KM MEAS/MEAS MEAS/MEAS MEAS/DEGK MEAS/PSCHT	1643.04 .12136 .12136 8.2401 .01832 54.5940 .1052	PRESS 1+00-46 7-1458 7-0631 602137 45-7936 12427 3-0470	TEMP 232.53 16180 6.16180 6.1804 0.0242 0.9433 7.14202 7.1413	7559 17752 17752 19567 19567	ACCEL 704.73 .28311 3.5322 .04275 23.3924 .24649 4.0176941	ACCEL 516.76 .32834 3.0909 3.0909 20.4836 .28336 3.28336 3.28336	ACCEL +93.61 • 40438 2.40438 2.64729 16.3720 3.3720 3.3720 3.3720 3.3720	ACCEL 329.41 1.6491 1.6491 10.91164 10.91184 11.8728	H SPEC 165.20 1.21135 .8252 .18344 5.4515 1.06368 1.06368	M SPEC 124.15 1.61494 24171 6.2471 4.0864 1.41750 82.34459 6	A SPEC 2.01762 2.01762 3.0009 3.2074 1.77094 15.94016	M SPEC 83.10 2.41907 .4132 .36746 2.7214 2.12401 .12401 .55.00362
RADIJS 59535 TI4E 5053	59535.000 KM 59535.000 KM 64.17512 HIN 1.402919 HRS	ALTITUDE VELOCITY	265.000 -869.423 39.938 6.1972 131.030	KM KFT HETER/SEC H3/SEC F1/SEC		DYN P DOPPER MACH NO	20.793101 BAR. 20.521195 ATM .011676 BAR. 2.895688E+02	S S S S S S S S S S S S S S S S S S S	TEMPERATURE	239.554	8 KELVIN 4 FAHKENHEIT	HEIT
NSTRUMENTS O OF HEAS MANEAS HANEAS EAS/ MEAS ARS/ MEAS EES/ MEAS EAS/ DEGK EAS/ DEGK	1ENP 11684-50 111980 6.3476 53.6729 53.6729 9.5103	1+44.00 13976 13976 13976 01166 45.1756 45.1756 12267 3.1219	TEMP 1263.63 10 15972 6.2641 0.02475 10.4026 7.14319 7.15319	PRESS 1011.11 .19964 .03094 .2.3203 5.7068 2.5601848	ACCE	ACCEL 532-31 31937 3-1312 04951 20-1970 - 201970 3-5673	ACCEL 506.05 .39917 2.5052 .06190 16.1559 2.8541 .35.43178	ACCEL 337.70 .59860 1.6706 .09287 10.7678 1.52542 1.52542	M SPEC 159.35 1.19628 . 8359 . 18588 5.3797 1.05002 . 9524	M SPEC 127.26 1.59422 .6273 .24798 4.0326 1.39931 .7146	M SPEC 102.01 1.99175 31013 3.224 1.74424 1.74424 5.5720	A SPEC 2.368.18 2.4186 3.47235 2.09685 2.09685 56.34085
RADIJS 59530 TI4E 5175 86.2	59530.000 KM 5175.512 SEC 86.27521 HIN 1.437920 HRS	ALTITUDE: VELOCITY	-270.000 -885.827 39.429 6.2783 129.361	KY KFT HETER/SE MB/SEC FT/SEC	٠ ن	PRESSJRE 2 DYN P DOPPLER MACH NO	21.57771 BAR 21.295605 ATH .011675 BAR 2.85802E+02	S GPS	TENPERATURE	247.453	6 KELVIN 3 FAHRENHEIT	HE I I
INSTRUMENTS NO OF MEAS KM/MEAS MEAS/KM BARS/MEAS MEAS/BAR MEAS/BAR MEAS/MEAS	1726.50 .11827 8.4532 0.01881 53.1690	PRESS 1+80.00 •13796 7.2475 •02194 45.5723	1295-13 16 -15769 6-3418 -02508 39-8747 31	1036.30 19710 19710 1037 11.8981	ACCE	ACCE - 346.06 3 - 1715 - 2763 - 2763 - 2763 - 2763 - 2763 - 2763	5.4500 EL 15.650	ACCEL 346.10 .59039 1.6921 .09416	173.55 1.13109 . 8467 . 18834 5.3096	130.41 1.57399 .6333 .23125 3.9601 1.38155	10 SPEC 10 96650 10 96650 3 3 14 22 3 4 18 25 10 72607 10 72607	A SPEC 87.28 2.35862 .4240 .3776 2.6597 2.6597 2.65905

SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN JOMINAL ATNOSPHERE
BALLISTIC CJEFFICIENT = .700, INITIAL TIME =

SECONDS AT \$9900.000 KM RADIUS .

SEP 30 BARS

TIME 5304						_	c	<		Ŀ		
	4.135 SEC	VELOCITY	38.93	2 METER/S	SEC D	d NAO	.011675	BAKS		555.65	23 FAMKENMEII	H 1
1.4	3371		127.731		A A	MACH NO)) !				
INSTAUMENTS	TEMP		TEMP	PRESS	ACCE.	ACSEL	ACCEL	ACCEL	M SPEC	M SPEC	MSPEC	M SPE
10 OF MEAS	1709.04	1,1	1327,03 1	1061.83	758.73	564.32	531.41	354.01	177	133.60	107.06	04.68
KH/M: AS	.11678	-	15570	.19461	.27243	.31134	.36913	. 28355	1.16	1.55423	1.9+184	2.32905
EAS' KM	8.5631	~		5.1384	3.6765	3.2120	2.5698	1.7136	•	. 5434	.5150	. 42 94
IARS/ MEAS	.01905	•	02541	.03176	24440	.05082	.0635+	.09533	• 1.9	. 25453	.31832	.38217
IEAS/ BAR	52.+815	÷	۳,	31.4858	22.4875	13.6757	15.7390	10.4900	N	3.9288	3.1+15	2.6166
EGK/ MEAS	.10250		.13666	.17082	.23912	. 27327	.34156	.51221	N	1.36421	1.70442	2.04431
MEAS/ DEGK	9.7559	œ,	7.317	5.8541	4.1819	3.6594	.927	1.9523	ຕ	733	1983.	.4892
<u>-</u>	*75.19500*	17.356218	31.4771170	4	m	0.9002	52.7848	35.	1028	3837	70.81517	99
RADIJS 59520.000	1.000 KM	ALTITUDE	-280		PRES	SJRE 2	3.209027	3 AKS	TEMPERATUR	£ +01.6	Z+ KELVIN	
			16.	•		~ .	2.965529	ATM		203.25	53 FAHRENHEIT	HEIL
1135 3433		VELUGI18	Š,			4 % CO	• U116/6	HAKS				
1.50	1.509271 HRS		6.4408 126.139	~ 1	7.2	JOPP-ER	2.787598E .026509	+02 CPS				
NST & UME N FS	TCMP	PRESS	TEMP	PRESS	ACCEL	ACCEL	ACCEL	ACCEL	NSPEC	A SPEC	A SPEC	NSPEC
0 0" MEAS	1812.13	M	34	087.68	,	580.17		363.23	182,11	1.30.83	109.57	
KM/ME AS	.11532	-		.19219	.26904	.307+0	.38429	.57629	1,13175	1.53493	1.91774	2.30019
EAS' KM	8.6712	7 - 4326		5.2032	3,7169	3.2525	2.6022	1,7352	. 4682	.0515	. 5214	14344
ARS/ MEAS	.01930	. 02252	.02574	.03217	.04504	•	.06+36	.09656	.19327	.25781	. 32243	.36710
MEAS' BAR	51.8103	*** # 077	8558	11.0831	22, 2001	19.42+1	15,5378	16.3566	5.17.2	3.4738	5.1115	2.58
DEGKIMEAS	. 10 122	-		.15869	.23615	. 26987	m M	.50583	1.01093	1.34727	1.66327	2.01896
	9.8790	3.4679	4604.7	5.3280	4.2347	3.705		69	.9892		.5341	• 4953
EAS/ PSCHT *	2	31, 159479	62 • 30496721	.908635	15.7414045	1, 314133	61.115962	40.851691	20.56730	9ú.52113 <i>7</i>	2.46138 (60.45484
RADIJS 59515	5.000 KM	ALTITUDE	285.000	¥	SES D	SSJRE	4.056230	HARS	RENDERATION T	3F ±05.012	Z KF. VIA	1
			-935	K=1	;	. ~	3.741654	ATM				€IT
TIME 556+	S	VELOCITY		METER/	SEC	a .	.011676	BAKS				
92.7 1.54	92.73735 MIN 1.545622 HRS		6.5223	MB/SEC FT/SEC	MACH	× 0	2.753222E .026040	+				
NST & UMENTS	TEMP	PRESS	TEMP	PRESS	ACCEL	ACCEL	ACCEL	ACCEL	M SPEC	M SPEC	M SPEC	M SPEC
S	1855.75	1.0	٠.	1113.85	795.89	696.53	557.42	371.95	186.47	40.11	112.28	93.
KM/ME AS	.11390	.13288	9	.18982	.26572	.30357	.37955	• 26 919	1.13758	51607	1.49420	2.27197
EAS' KM	8.7794	7.5254	.5849	5.2681	3,7633	3.2930	2.6347	1.7569	.8791	•6536	.5279	. 4401
BARS/ MEAS	.01955	.02281	. 02507	.03258		.05214	.06518	.03780	.19574	. 26111	. 32654	.39204
EAS/ BAR	*	43 . 8455	 Or	10.5897	21.9191	19.1733	15.3412	10.2250	5.1088	3.8298	3.0624	2.5508
DEGK/ MEAS	. 1999	.11664	13330	.15661	.23324	. 26654	.33315	19664.	06866.	07	1.66261	1.99420
	123	3.5736	7.5021		4.2875	3.7517	3.0017	2.0016	1.0015	.7515	.6015	.5015

SECONDS AT 59900.000 KM RADIUS .0 SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONGGRAPH SATURN JOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL TIME =

RADIJS 59510.000 r TIME 5695.730 S 94.94550 r 1.532425 F	KM A SEC W HIN HAS	LLTIT UDE	-290.000 -951.444 37.510 6.6040	KT KT METER/S MAJSEC FT/SEC	<u>.</u>	PRESSURE 2 DYN P 30PPLER MACH NO	24.924899 24.598962 .011676 2.719628E	BAKS ATP BARS +02 CPS	TEMPERATUR	E +10		KEL V IN Fahrenme I T
INSTRUMENTS TEMP NO 0° MEAS 1899-91 KM/MEAS .11251 MEAS/KM 8.4878 BARS/ MES .01980 MEAS/BAR 50.5133 DEGK/ MES .09875 MEAS/ DEGK	EMP 152 251 152 251 152 251 151 878 75 875 63 875 63	RESS 8.64 14 3126 6183 65183 2961 37 1521 75147944	TEMP 1501 15001 •6662 •8832 13157 •5947	PARSS 140.35 140.35 140.31 6.33.32 6.33.00 6.34.00 6.94.05 6.07.61 83.00.53	ACCEL 814-82 .26248 3.8098 .04620 21.6445 4.3404 4.3404	ACCEL 713.19 .2997 3.3337 .05290 13.9381 .26329 3.7941	ACCEL 570.07 .37492 2.6672 .06601 15.1490 .32909 3.0387	ACCEL 380.78 .502.78 1.7785 .09904 16.0970 .49351 2.0263	H SPEC 190.89 1.12374 1.12374 1.0899 5.0450 1.0138	M SPEC 1+3.42 1.49763 .6677 .26441 3.7620 1.31453 94.76413	H SPEC 11+93 1-67116 -5344 -35067 3-6242 1-64241 -5069	C M SPEC 3 95.95.95.95.95.95. 4 2.24439 7 3.36999 2 2.51999 1 1.96399 5 63.26350
TIME 59505.000 K	KA SEC MIN HRS	LTITUDE	-295.000 -967.848 37.057 6.6458	KY KFT METER/S M9/SEC FT/SEC	EC	AESSJRE 2 DY4 P DOPPLER	5.815344 5.477764 .011676 2.6867886	BARS BARS BARS + 02 CPS	TEMPERATURE	414. 286.	25	KEL VIN FAHRENHEIT
NSTRUMENTS 1944 NAME AS 1944 NAME AS 1944 ARSY KM 6.9 ARSY KAS 6.9 EASY BAR 49.8 EGKANEAS 0.09 EGKANEAS 0.09 EASY DEGK 10.2	15.6 P	RESS 6.96 14 2968 14 7114 6 2339 6 7591 37 7855 7 4104965	TEMP 158.71 1 174.80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRESS 187-17 18524 5.39983 9.9293 16259 6.1503	ACCE. 833.93 .25932 3.8563 21.3761 4.3761 4.39351 2.3321444	ACCEL 729.36 229635 3.3744 05347 18.7033 .86612 3.8644	86 6 4 4 6 2 6 5	AGCEL 389.72 389.74 1.8603 1.0028 9.9719 0.43756 2.0510	PEC 620 620 670 670 625 562	M SPEC 1+6.77 1.47961 .6739 .26772 3.7352 1.29871 .7700	N SPEC 11. SPEC 1.84866 .54481 .33481 2.93481 1.65266 1.65266 1.65266 77.66402	H SPEC 2 98-18 6 2 - 21743 6 2 - 21743 1 4 - 4 01910 1 4 -
RADIJS 59500.000 K TIME 5966.596 S 99.44326 H 1.657388 H	KH KH MIN HRS	LTITUDE	-300.000 -944.252 36.614 6.7678 120.124	KFT KFT HETER/SEC HB/SEC		DYN P 200PLER HACH NO	6.727880 6.378367 011676 2.654680c	BARS BARS BARS +02 CPS	TEMPERATUR	URE 419.17	1 0 7	KEL VIN Fahrenheit
INSTRUMENTS TEMP NO 0° MEAS 1989.87 KM/MEAS 10983 MEAS/KM 9.1052 MEAS/MEAS 0.02029 MEAS/BAR 49.2742 DEGK/MEAS 0.95540	42.4.03.	RESS 14 2013 0 2010 6 2368 0 2461 36	TEMP 14643 14643 16292 02706 2595 1	1194.32 1184.32 1184.32 5.4636 29.9618	ACCE. 853.37 .25622 3.9129 .04735	ACCEL 746.32 .29281 3.4152 .05413	ACCEL 597.66 .36598 2.7324 .06767	3 ACCEL 3 9 G G G G G G G G G G G G G G G G G G	199.89 1.09647 .09116 .09119	M SPEC 150.16 1.46198 .6840 .27104 3.6695	1200 USPEC 1200 USPEC 1200 USPEC 220	3 100.44 8 2.1910.44 7 2.1910.6 7 2.49693 8 2.49693

SURVIVABLE SATURN PROBE TASK 4 DESCENT RUNS
JP. MONOGRAPH SATURN NOMINAL ATMOSPHERE
BALLISTIC COEFFICIENT = .700, INITIAL ITME

US AT 59900.060 KM RADIUS

BALLE	STICCO	BALLISTIC COEFFICIENT = .700, INITIAL	.700,	.700, INITIAL TINE	= 5/11	•	SECOND
BAL.	COEF.	BAL. COEF. 0.65/0.70/1.50	96.	SEP 30 BARS	BARS		

RADIJS 59+9	9+95.000 KM	ALTITUDE	JDE -335.00	PX 00	P	ESSJRE	27.662323	BAKS	TEMPERATUR	LI	1 4	
TIME 610		VELOCITY	7		SEC	1 710	.011675	JAKS		302.721	ol FAHRENHE	H: 1.1
101. 1.6	101.73296 MIN 1.635543 HRS		°° 118	UO M3/SEC U4 FT/SEC		1.1 7	∞⊸	E+UZ CPS				
INSTAUMENTS	TEMP	PRESS	G W	55.45d	ACCE	46.37.1	40.0	13000	2 2	0000	2	5
NO OF MEAS	2035.66	174	1526.99	1221.80	873.00	^	4 4 4 6	1000	20.5	0 4 5 11 5	3 1 2 2 2	3 27 63 4
KM/NE AS	.10853		16470	18087	01210				•	10.00T	00.521	51.51
MEASTER	9.2142		00.0	000	2070		7010		•	0.00	010001	07691.7
DADO MEA C	711000	•	£ 0 7 £ 0 0	0.00	D ()					7760.	1+01.	.4016
	\$ 100 CO	•	66/20	#2#CD •	C6 / 40 0 0					. 27+37	.34311	.41191
7 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	101000	₹	740000	2707.67	77.02.07	10.2+32	_			3.54+7	2.91+5	2.4277
SAN TOTAL	92660 *	•	12701	15875	. 22223	. 25337	.317+4	•47605		1.26811	1.20+4b	1.90053
		·			4.4998	~	3.1502	2.1006		.7885	.c311	.5262
MEAS/ PSCHT	* 46.39341*	54. 50938*	10.323618	08.323525	77.46627	505, 32337	404.323312	269.656541	34.389661	01.3223	31,12276	o7.65598
RADIJS 59490	39490.000 KM	ALTITUGE	: '	1	53.	FRESSIRE	28.620484	BARS	TEMPERATUR	RE 427.956	56 KFLV1N	:
			-1017.05	50 KT			28.246229	ATK		ı		HF I T
TIME 6242		VELOCITY	32	METER/	SEC	OY4 P	.011675	BAKS		1		· !
104.	104.34592 MIN		5.9323		00	JOPP. ER	2.5925602	+02 CFS				
1.7			117 • 31	14 FT/SE3	7	ACH NO	.023883					
INSTRUMENTS	d Will	PRESS	TEMP	PRESS	ACCE	1 ± 0 0 V	400 A	ACCE	0 1 2	J. 00	9	7000
NO OF MEAS	2082.00	1784.71	1561.75	1243.00	892.86	781.37	625.30	417.20	9	157.07		ף ק
KM/NE AS	.10726		430	.17875	.25023	. 285an		53632	1.07135	- 1 / 1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	77.7	7000
MEAS! KM	9.3233	7 . 9915	6.9328	3,9945	3,9964	3.4970	2.7978	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1220	2002	3 1 1 1 1 1	C 11 0 4 T + 7
BARS! MEAS	.02979	Ü	277	.03+66	.04853	9.670		10403	28.5	. 2777.	X0 0 1 2 1	200
MEAS/ BA?	48.0891	41.2183	36.0553	28.8510	20.0061	13.0236	14.4224	9-0124	4.84.34	3.0010	2.57	2. 39.86
DEGK/ MEAS	. 19414	-	. 12552	.15689	.21963	. 25130	.31372	84024.	250+6	1.255331	1.20597	1.37535
MEAS DEGK	10.6220	9.1048	7.9568	6.3737	4.5530	3.98+1	3.1875	2.1255	1.0634	7979	1980	53.04
MEAST PSCHT *	76.83325*	80.18835*	32 • 7057348	26.229215	90.2560+5	10.514+2	+13-276142	75.625061	-	۵		* *
PADT 12 594.85.000		AL TITUDE	00 348 00	7	200	20100000	1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					-
					, i		201710062	0 X X O	・ログドロスターリスク	704		• 6
TIME 0383.651		VELOCI	' <u>⊢</u>	METER/	SEC	0 V V	.011676	10 T T T T T T T T T T T T T T T T T T T		•	OU FANKENMEL!	1.1.1
	NIW 6146			M3/SEC)	JOPP. ER	5625058	+02 CPS				
1.77	1.773237 HRS		115 . 954		A P	4ACH NO	. 023465	:				
INSTRUMENTS	TEMP	PRESS	TEMP	PRESS	ACCEL	ACGEL	ACCEL	ACCEL	M SPEC	DEGS W	SPEC	J. d.S.
A S	2128.88	132	1596.91	1277.73	912.95	798.36	639.37	425.58	213.79	150.59	128.07	- 0
KM/MEAS	.10601	. 12368	.14135	.17668	.24733	. 28255	.35328	.52981	1.35897	1. +1138	1.70350	2,11533
	9.4326	÷	7.0748	5.6601	4.0432	3.5330	2.8300	1.3475	. 3443	.7632	1503.	.4727
'n	.02105	• 02+55	.02306	.03508	.04911	.05513	.07017	.10526	.21069	. 23134	3.145	.42192
	47.5158	9	35.6353	28.5071	20.3605	17.01.47	14.2505	785+.5	4.7402	3.5562	2.0453	2.3701
DEGK/ MEAS	• 09335	7	.12407	.15508	.21709	.24809	.31009	2000t.	. 32950	1.23882	1.54789	1.05671
	10.7405	3.211	8 • 06 02		4.6064	~	3.2	2.1564	1.0729	.8672	0040.	.538c
MEAST PSCHI .	07.02315*	00990.90	55 • 3441484	4 . 34 3135 (03.194545	27.835514	25,333092	31.663031	40.332881	15.32528	84.72466	10.65757

APPENDIX M

PROPULSION SUBSYSTEM ANALYSIS AND DEFINITION

- R. Moses and
- R. Fearn

June 19, 1972

PROPULSION SUBSYSTEM ANALYSIS AND DEFINITION (NOMINAL JUPITER PROBE)

The data presented in this appendix were prepared early in this program and are presented here largely unchanged. The data in Volumes I and II include later iterations of design, in some cases, and varies with data in this appendix.

The selected propulsion systems were studied in depth to evolve more accurate definitions of their characteristics. Neither the solid motor nor the cold gas systems exist in their entirety as flight-qualified items that will exactly satisfy the Jupiter probe propulsion requirements, but the design of suitable systems based on existing technology is not an enormous task.

In the case of the solid motor, sizes both larger and smaller than the size (total impulse) required for this application have been developed and flight-qualified so that a new design may be developed by interpolation rather than extrapolation. Any one of the several major solid motor manufacturers in this country is capable of developing the required motor. The principal characteristics of the proposed motor are discussed herein.

The situation with regard to the cold gas system is slightly different in that it would consist of an assembly of individual components, the majority of which already exist in a flight-qualified status. Very likely, the only component to be fabricated specifically for this application would be the gas storage vessel, and even this exists in sizes very close to that required. Identification of specific candidate components for the system is included in the discussion herein.

A. SOLID PROPELLANT MOTOR

1. General Configuration

The general configuration of the motor is anticipated to be spherical, but with two partially submerged nozzles instead of the usual one to predude plume impingement on the spacecraft after probe separation. Except for the two nozzles, the motor will resemble a scaled-down version of the Thiokol TE-M-385 motor shown in Fig-M-1. It has a high strength titanium alloy case containing a bonded TL-L-305 liner (insulator) and a TP-L-3014A composite propellant grain of an 8-point star configuration. The nozzle is of phenolic construction with a graphite throat insert; a screw-in igniter near the nozzle provides propellant ignition.

AS	SE
	A:

Material	Titanium	Alloy 6Al4V
Strength, Min.	Ultimate, psi	165,000
Strength, Min.	Yield, psi	155,000
Pressure, Hydrostatic Test, psi 1,4		
Nominal Thick	ness, in.	0.04

NOZZLE

Material, Body	Vitreous Silica Phenolic
Material, Throat Insert	CGW Graphite
Area, Throat, in. ²	1.86
Ratio, Expansion	23:1

LINER	TL-L-305
-------	----------

IGNITER

Type and Designation	PYROGEN TE-P-386
Minimum Firing Current,	amps 4
Circuit Resistance, ohms	1.00 + 0.20
No. of Squibs/Igniter	1

CURRENT STATUS	Production
----------------	------------

PROPELLANT

Designation	TP-L-3014A
Web, in.	3.79
Density, Loading, Volumetric, %	83.5
MOTOR PERFORMANCE	
Time, Action, sec	5.7
Time, Ignition Delay, sec	0.022
Pressure, Chamber, Avg, psia	790
Impulse, Total, lbf-sec	14,000
Thrust, Avg. Action Time, lbf	2,150
WEIGHTS, lbm	
Total, Loaded	67.4
Propellant	55.4
Total, Inert	11.84
Mass Ratio	0.823
TEMPERATURE LIMITS, °F	
Operation	-20 to 180
Storage	10 to 160

Figure M-1 Thiokol TE-M-385 Motor

2. Propellant

The specific propellant to be used in the probe motor will be determined at a later date, dependent upon the selection of the supplier for the solid motor assembly. Each of the major solid motor manufacturers has his own collection of proprietary propellant formulations from which to choose, several of which will probably provide the required performance. The specific one selected as baseline for this study is a Thiokol modified TP-H-3062 propellant that contains 70% ammonium perchlorate and 16% aluminum in a CTPB binder. It has good physical characteristics, a very high specific impulse (principally the result of the high percentage of aluminum), and a relatively low burning rate that permits operation at a relatively low thrust level. It has a normal storage temperature range of 272 to 322°K (20 to 110°F) and a normal operating range of 283 to 311°K (40 to 90°F). The chamber pressure (and thrust) increase only 0.1% per °F temperature increase, while the burning time decreases a proportionate The delivered total impulse changes only 0.003% per °K (0.005% per °F) temperature change, so that it is possible for the manufacturer to guarantee a 3-o variation in total impulse of only ±0.75% from nominal. This degree of total impulse control is believed to be adequate for the Jupiter probe application.

The principal disadvantage of the propellant is the large percentage of solids in its exhaust products, leading to a plume impingement problem in some situations. More detailed propellant characteristics are presented in Figure M-2.

3. Motor Size

If the quantity of propellant consumed in accelerating a mass is negligible relative to the mass being accelerated, the total impulse required may be approximated by

Ft =
$$\frac{W_I \Delta V}{g}$$
 = $I_{sp} W_P = \frac{V_e}{g} W_P$ lbf-sec, or

$$\frac{W_{P}}{W_{I}} = \frac{\Delta V}{V_{e}},$$

[M-1]

Designation: Modified TP-H-3062

Composition: CTPB/AP/AL Composite

70% AP 16% AL

Characteristic Exhaust Velocity, C*, 1510 m/sec (5015 fps)

Burn Rate Equation at 70°F, $\left[0.207 \left(P_{c} / 500\right)^{-0.34}\right]$

Density, $1740 \text{ kg/m}^3 (0.0628 \text{ lbm/in.}^3)$

Ratio of Specific Heats, 1.16

Temperature Sensitivity Coefficient, π_{K} , %/°F, 1.10

Specific Impulse, I_{sp} , 2820 N sec/kg (287 sec)

Typical F/t Performance

TE-M-345-12 Motor, TP-G-3129 Propellant

Figure M-2 Proposed Jupiter Probe Propellant

where

F = thrust, 1bf

t = action time, sec

 W_T = mass being accelerated (initial mass), 1bm

 W_{D} = quantity of propellant consumed, 1bm

 I_{sp} = propulsion system specific impulse, sec

Ve = propulsion system effective exhaust velocity, fps

 ΔV = velocity increase, fps

If the quantity of propellant consumed is not negligible, it is necessary to use an integral solution of Newton's law based on a constant rate of propellant consumption yielding the following expression for the propellant consumed:

$$\frac{W_{P}}{W_{I}} = \frac{W_{I}/W_{F}}{W_{I}/W_{F}}^{-1}$$
 [M-2]

where

$$\frac{W_{I}}{W_{F}} = \log^{-1} \frac{\Delta V}{2.303 \text{ Ve}}$$

Since the difference between W_P/W_I as computed from Equations [M-1] and [M-2] is usually small for typical spacecraft propulsion systems, it is possible to provide a very accurate graphical solution to Equation [M-2] without the need to resort to logarithmic tables. Figure M-3, a plot of the difference between Equations [M-1] and [M-2], provides such a solution. Once the spacecraft ΔV and propellant I_{sp} are specified, $\Delta V/Ve$ may be computed, $\left(\Delta V/Ve-W_P/W_I\right)$, read from the graph, and W_P/W_I obtained by simple subtraction.

The specific motor to be used on the Jupiter probe will require 12.3K° (27.1 lbm) of propellant, assuming a specific impules of 2820 N sec/kg (287 sec). (This value has been achieved in motors of similar design with TP-H-3062 propellant.) Referring to Figure M-1, for a ΔV of 221 m/sec (725 fps) and a resulting probedelta-velocity to rocket-motor-effective-exhaust velocity ratio:

Figure M-3 Probe Propellant Requirements

$$\frac{\Delta V}{V_{o}} = \frac{221(3.28)}{287(32.2)} = 0.0785,$$

then

$$\frac{\mathbf{W}}{\mathbf{W}_{\mathsf{T}}} = 0.0757,$$

and

 W_p (propellant weight) = 11.3 kg (25 lbm) for a probe having an initial weight (W_I) of 149 kg (330 lbm).

However, because of the fact that each nozzle is canted 22½° from the resultant thrust axis, the net thrust is only 92.4% of the gross thrust, and the total propellant required is 12.3 kg (27.1 lbm) instead of 11.3 kg (25 lbm). This still compares fairly closely with the first cut approximation of 11.3 kg (26 lbm) which used a cruder estimate of the required total impulse, and did not take into account the canted nozzles.

With the propellant load known, the approximate size of the motor (diameter) is also fixed. Using Thiokol data (Fig. M-4), it will be seen that a motor 10 in. in diameter is required to contain the 12.3 kg (27.1 lbm) propellant load in the proposed 8-point star configuration. Further, assuming a burning rate of \sim 0.79 cm/sec (0.2 m/sec) (Fig. M-5), the motor burn time will be \sim 15 sec; therefore, the net motor thrust is predicted to be

$$\frac{287 \times 25}{15}$$
 2135 N (480 1bf),

Providing a probe acceleration slightly more than 1.5 g. This level of thrust and acceleration appear to be perfectly acceptable to the probe, so there appears to be no reason for considering other alternatives. If this acceleration level proved to be unacceptable, and entirely different motor/propellant grain configuration might have to be developed.

Figure M-4 Motor Diameter versus Propellant Weight

Figure M-5 Buring Time vs Motor Diameter

Although there is some choice in the combustion pressure that can be selected for the motor, the minimum motor weight generally is achieved at a pressure in the range of 3.45×10^6 to 4.13×10^6 ${\tt N/m^2}$ (500 to 600 psia) where the chamber walls need not be excessively heavy, and the nozzle is still relatively small (and light). Assuming for convenience a chamber pressure of $3.8 \times 10^6 \text{ N/m}^2$ (550 psia) and a nozzle area ratio of 40, a thrust coefficient of ∿ 1.78 may be predicted based on known nozzle performance. the required nozzle throat area is found to be ~ 0.53 in.² or 0.265 in. 2 per nozzle. This yields a nozzle throat diameter of 1.47 cm (0.58 in.), an exit diameter of 9.3 cm (3.67 in.), and a divergent nozzle length of 14.4 cm (5.75 in.) assuming a nozzle half-angle of 15°. Then, assuming that the nozzle is ~ 40% submerged in the spherical chamber, the protruding length will be 8.9 cm (3.5 in.). The foregoing outline configuration is shown in Figure M-6.

Based on previous experience with motors of similar size, and the performance achieved with the high energy propellants such as Thiokol TP-H-3062, there is every reason to believe that a suitable motor can be fabricated with loaded weight <34 lbm. Assuming that the mass fraction trend established by Thiokol motors TE-M-541 and -516 can be maintained with this new probe motor, a λ of 0.84 should be attainable. This would result in a motor loaded weight of 14.6 kg (32.3 lbm) (for a single nozzle configuration), or a weight of possibly 15.3 kg (33.8 lbm) to account for the additional nozzle.

Figure M-6 Nominal Jupiter PRobe, Solid Motor Characteristics

Propellant Weight	12.3 kg (27.1 lbm)
Loaded Weight	15.3 kg (33.8 lbm)
Chamber Pressure, avg	$3.7 \times 10^6 \text{ N/m}^2 \text{ (550 psi)}$
Burn Time	15 sec
Thrust, gross	2310 N (520 1bf)
Thrust, net	2135 N (480 1bf)
Total Impulse, gross	34,600 N sec (7770 1bf sec)
Total Impulse, net	31,900 N sec (7180 1bf sec)

B. AUXILIARY PROPULSION

The cold gas system has been evolved to accomplish the four auxiliary propulsion functions: spin, despin, precess for the probe, plus deflection of the service module. The system is depicted schematically in Figure M-7. It may be considered to consist of five subsystems, i.e., the four subsystems that accomplish spinup, precession, despin, and module ejection, respectively, plus the gas supply subsystem that provides GN_2 to the thrusters under the proper conditions. This system does not necessarily represent the optimum solution to the propulsion requirements, but it appears to be a good solution in that it has sufficient redundancy to assure a high reliability, yet is not unnecessarily complex and heavy. Redundancy is provided for all valve functions.

It is envisioned that the system will use GN_2 as the working fluid, stored at an initial pressure of $\sim 24.5 \times 10^6$ N/m² (3500 psi). Fluids other than GN_2 conceivably could be used, but they offer very little advantage in terms of performance and/or system weight. Storage at this pressure level is somewhat arbitrary, but results in a pressure vessel volume that is not too large, and provides a greater selection of system components. A conventional pressure regulator is used to reduce the pressure to $\sim 17 \times 10^4$ N/m² (25 psia) for use by the thrusters.

The majority of the thruster/valve clusters are located at the periphery of the probe to provide the maximum possible moment arm, and are interconnected to the GN_2 supply system by means of stainless steel tubing. To minimize system leakage, all joints are either welded or brazed. The selection of specific components for the system has not been pursued in depth, but potential suppliers and even candidate components have been identified to some degree. The next step in the evolution of the design would be to evolve a detailed system layout that defines each individual component, the interconnecting line sizes and configurations, and the mounting provisions.

Figure M-7 Auxiliary Propulsion Schematic

1. Spinup Subsystem

The first subsystem to go into operation is the spinup system that accelerates the probe to a rotational velocity of ~ 10.5 rad/sec (100 rpm) before the firing of the ΔV motor. As will be noted on the schematic, the system selected is extremely simple and at the same time highly reliable. The subsystem is not provided with an independent start capability. Instead, the pyro valves in the gas supply subsystem are fired to activate the thrusters, and to provide gas up to the control valves of the other auxiliary subsystems. Then after the required operating period, thrust is terminated by firing the series redundant N/O pyro valves. The elimination of valving to control each of the two thrusters individually will result in a longer thrust tail-off than otherwise, but the tailoff impulse is insignificant compared to the total spinup impulse.

The selection of the thrust level to be used is to some degree arbitrary, but not completely without guidelines. From purely propulsion considerations, a low thrust level is desired because it leads to valves, thrusters, and interconnecting lines that are small and lightweight. On the other hand, as the thrust level decreases and the spin time increases, the pointing accuracy of the probe is degraded rapidly. From a structural standpoint, high thrusts may not be desirable, but the shorter thrust periods are advantageous to the guidance system. The 4.4 N (1 lbf) thrust level appears to represent a reasonable compromise between two extremes, though no real attempt has been made to determine the optimum thrust, if indeed one can be defined. Thruster/valve clusters in the 4.4 N (1 lbs) thrust category are relatively common (and available) and are not excessively heavy, yet provide a spinup time interval that does not appear to be too long. To provide the required 276 N/sec (62.8 lbf sec) impulse with two 4.4 N (1 lbf) thrusters, it is evident that the burn time will be only slightly more than 30 sec.

During the continuous burn of this magnitude, (expelling $^{\circ}$ 1/4 of the stored gas), performance $\left(I_{sp}\right)$ will decrease slightly as the gas temperature drops. This will result in the consumption of a larger quantity of gas than that previously computed for the spin-up maneuver, but the total delivered impulse can still be predicted very accurately. The added GN_2 required has been accounted for in the 30% "pad" provided in the storage gas requirements.

The calculations for the ACS system sizing is presented in this Appendix following the system description.

2. Despin Subsystem

The second auxiliary propulsion function to be performed is the precession of the probe axis to the proper Jupiter entry angle, but the despin maneuver will be discussed first because of its similarity to the spinup maneuver. The despin subsystem provides the same torque to the probe as the spinup subsystem, but it is applied in the opposite direction to reduce the angular velocity of the probe from 10.5 rad/sec (100 rpm) to 52 rad/sec (5 rpm) before atmospheric entry.

The thrusters used in the two subsystems would be of identical designs, but the valving is different because the despin subsystem must have provisions for both start and shutdown. This capability conceivably could be provided by a combination of N/O and N/C pyro valves, but solenoid valves have been tentatively selected because they provide greater operational flexibility. The solenoid valves permit the application of a series of impulses to achieve the proper rpm should this mode of operation be found necessary. A predetermined thrusting interval (achieved with a timer) may not exactly provide the desired final probe rpm so that one or more vernier impulses may be required.

The tentatively selected valve cluster includes only two solenoids in a parallel redundant configuration. Consideration has been given to the use of a quad redundant configuration, but this does not appear to be necessary. The two-valve configuration provides a very high reliability because of the very limited number of operational cycles involved (possibly, only one), the very low probability of failure to close once the valve has opened, and the negligible overall effect of leakage through the valve seat. All the auxiliary propulsion functions will have been accomplished within a few hours after the termination of the despin impulse, so the quantity of gas that could be lost as a result of "normal" valve leakage is insignificant.

Sizing of the despin thruster is not at all critical. Large thrusters would not be appropriate because they would be unnecessarily heavy, but small thrusters could be used without detrimental effects. Adequate time is available to accommodate a prolonged despin maneuver. To minimize the number of different sizes of components, however, 4.4 N (1 lbf) thrusters have been selected to provide the despin function. With thrusters of this

size, despin will be accomplished in slightly less time than spinup (within \sim 30 seconds), consuming 0.376 kg (0.83 1bm) of GN_2 in deliveriging 267 Nsec (60 1bf sec) impulse.

3. Precession Subsystem

The precession subsystem applies a moment about one transverse axis of the probe to effect precession of the probe about a second axis at 90° to the first, eventually rotating the probe longitudinal axis through an angle of 0.89 rad (51°) for proper Jupiter entry attitude. This torquing of the probe is accomplished by pulsing the precession thruster for a short time, usually once each revolution. A single thruster has been selected to provide the required torquing. This results in the application of a small ΔV to the probe in addition to the moment, but this appears to present no particular problem. The use of a single thruster, of course, results in minimum system complexity and weight.

The one operating requirement that is different for this subsystem is the necessity for repeated pulsing of the thruster. Consequently, it is mandatory to use solenoid valves instead of pyro valves to control the thruster. The selection of parallel redundant valving rather than quad redundant valves follows the same basic logic as for the despin subsystem; i.e., a very high reliability is achieved without resorting to a four-valve configuration.

The choice of thrust level for the precession thruster is somewhat more critical than for other subsystems. Application of a high torque to the probe will produce a pronounced undesirable nutation, though the precession will be accomplished with a relaively small number of pulses and in a short elapsed time. Application of a low torque results in only a very small amount of nutation, but requires a relatively large number of pulses (resulting in lower reliability), and consumes an excessive amount of time. To provide the 249 Nsec (56 lbf sec) impulse required with a single 4.4 N (1 lbf) thruster, it is evident that 56 seconds of thruster operation is required. If each thruster pulse is restricted to 0.78 rad (45°) of probe rotation (1/8 revolution), it is evident that the elapsed time required to accomplish precession will be \sim 7.5 minutes; the total number of pulses required is \sim 750. The application of thrust must be limited to approximately 1/8 of the probe revolution in order to achieve maximum efficiency. As the angle of rotation during thrust application increases, the effective moment arm decreases, thereby necessitating a greater total impulse and increased consumption of GN_2 . If a 0.44 N (0.1 lbf) thruster were used, the number of pulses would increase to 7500, and the elapsed time to 1.25 hr.

4. <u>Deflection Subsystem</u>

The final function to be performed by the auxiliary propulsion system is to eject the service module (including the auxiliary propulsion system) from the probe just before Jupiter entry. The subsystem is required to provide a minimum impulse to deflect the module a safe distance from the probe, but there is no practical maximum limit to the impulse that can be tolerated. Only a very small total impulse is required, so the gas consumption is also small.

As seen from the system schematic diagram, it is proposed to provide a start capability, but no shutdown capability for the system. Any excess gas remaining in the system will simply be allowed to blowdown through the thruster, thereby providing a ΔV to the service module in excess of the minimum requirement. The simplest most reliable valving for this function appears to be the parallel redundant N/C pyro valves shown. These valves provide a reliability of nearly 1.0 for initiating the thrust; they are not required to provide thrust termination.

The thrust level to be provided for this function is not at all critical. The selection of the 4.4 N (1 lbf) thruster was made simply to achieve uniformity of components, but other thrust levels would accomplish the deflection maneuver equally well. The 4.4 N (1 lbf) thruster will accelerate the 25 kg (55 lbm) service module at a rate <0.02 g, and achieve the desired minimum service module ΔV of 1.5 fps in less than 3 sec, consuming less than 0.02 kg (0.04 lbm $GN_2)$.

5. Gas Supply Subsystem

This subsystem must provide long-term storage for all of the gas to be used for the auxiliary propulsion functions, and subsequently supply the gas to the thrusters under the required conditions of pressure, flowrate and cleanliness. It is envisioned that the subsystem will consist of a pressure vessel for storage of the compressed gas, a fill valve for loading the gas into the system, pyro valves to isolate the gas from the thrusters until needed, a pressure regulator to reduce the pressure from the maximum storage value of 24.6 N/m^2 (3500 psi) to a usable constant level of $17 \times 10^4 \text{ N/m}^2$ (25 psia), a filter to remove particulate contaminants, and transducers to monitor storage and regulated pressures. Since the thruster subsystems do not operate simultaneously, the gas supply components need to be sized to accommodate a maximum flowrate corresponding to the operation of only two 4.4 N (1 lbf) thrusters.

The total amount of gas required by the thrusters is ~ 1.13 kg (2.5 lbm). Since the stored gas is effectively isolated from the thrusters throughout a majority of the mission, leakage can be held to a negligible amount by careful quality control of the welded and brazed joints. Since the thrusters are activated for only the final few days of the mission, they should not contribute a significant amount of leakage even if the valve seats should become contaminated with particulate matter. However, a quantity of gas somewhat greater than 11.3 kg (2.5 lbm) is required to account for some inefficiencies in the thruster outputs, and provide a reasonable safety factor. Normally, it would also be necessary to account for a significant amount of residual unusable gas at the end of the mission, but, in this case, the system will be blown down during the final deflection maneuver so that all the remaining gas is effectively used.

It was noted previously that thruster performance during the long spinup and despin maneuvers will probably fall a few percent below the assumed I $_{\rm sp}$ of 705 Nsec/kg (72 sec). In view of this, it is proposed to provide an initial charge of gas that is 30% greater than the summation of the thruster requirements; i.e., 1.48 kg (3.27 lbm) instead of 1.13 kg (2.5 lbm). It is believed that this will provide an adequate factor of safety for this specific type of mission.

It is proposed to use parallel redundant N/C pyro valves to provide isolation of the stored gas until needed by the thrusters. These valves are very simple, light in weight, and highly reliable. They do not leak before activation, and they exhibit an extremely low failure rate (reliability nearly 1.0).

The presence of the pressure regulator results in a somewhat low reliability for the subsystem, but this is unavoidable. The regulator is absolutely essential to the proper operation of the system. Unfortunately, however, about the best reliability that can be expected is 0.9975, which leads to a subsystem reliability of approximately the same value.

6. Component Selection

It is not intended as part of the current study to make final selections of the components to be used in the auxiliary propulsion system. Final selections would only be made after a more detailed analysis of system requirements had been completed, and an in-depth search for state-of-the-art components had been conducted. However, the current study has proceeded to the point of identifying

GN₂ for Mariner Mars Application Emergency brakes for B-58 ${
m GH}_2$ tank for Mariner Mars Tank for Mariner Mars GN₂ tank for Agena He tank for Saturn Gas for Vela Hotel GN₂ for ACS on OSO GN₂ tank for F-106 Air/GN₂ for B-58 0₂ Tank for IOPS Tank for JPL For aircraft REMARKS 782000-503 823000-505 848000-501 864000-503 730500-501 23711546 PART NO. 23711407 23711400 30101-1 4425002 AS FW100 4425033 80094-1 4425038 80075-1 107519 806000 6428 3002 WEICHT, 1bm 1.75 2.57 3.94 1.65 1.67 2.1 2.0 2.8 2.7 1.6 2.4 2.4 1.0 1.3 2.1 3.0 3.0 7.2 MATERIAL Inc 718 Inc 718 6AL-4V 6A2-4V 6A2-4V 6AL-4V 6A2-4V 6A2-4V 6Al-4V 6A2-4V Glass/ Epoxy 6A2-4V Glass/ Epoxy 6A2-4V 6A2-4V 6A2-4V 4130 4340 SIZE OF SPHERE, 7.024 5.48 5.36 5.29 5.29 5.62 5.65 5.75 5.95 6.17 5.95 7.31 6.34 5.29 5.9 5.9 0.9 6.0 6.5 6.5 PV(10)76 0.249 0.510 0.160 0.350 0.306 0.225 0.225 0.225 0.299 0.525 0.325 0.335 0.452 0.477 0.300 0.470 1.13 1.08 PRESSURE, ps1 3,000 3,000 3,000 3,600 9,000 3,500 4,000 10,000 3,670 4,500 3,000 6,000 3,000 1,600 3,250 3,250 3,000 3,000 6,750 87.5 Vol. 100 103 113 113 68 75 75 75 83 83 85 100 100 160 75 100 130 157 MANUFACTURER Brunswick Whittaker Fansteel Fansteel Fansteel Fanstee1 Menasco Menasco Menasco Menasco Menasco Menasco Menasco Airite Tavco Tavco Tavco PSI PSI PSI

Table M-1 Pressure Vessels

M-19

at least the major functional requirements (specifications) for each component, the potential vendors, and in some cases, a specific candidate that appears to be a reasonably good selection. The results of this selection are given in the body of the report.

Since the pressure vessel is by far the largest and heaviest component in the system, it was studied in somewhat greater detail than the others. It sized as follows:

To contain 1.48 kg (3.27 lbm) of gas, the vessel must have a pressure-volume product of at least

PV = wRT = 3.27 (55.1) (530) - 95,500 psf ft³ =
$$1.145 \times 10^6$$
 psi in.³.

Since in this application it is proposed to use three pressure vessels to distribute the weight uniformly about the probe axis,

 $PV = 0.382(10)^6$ psi in.³ per vessel.

Then, referring to Table M-1, a tabulation of existing pressure vessels, it will be seen that a reasonable selection is a 15.2 cm (6 in.) diameter titanium alloy vessel manufactured by Fansteel for gas storage on the Vela Hotel Satellite. This vessel (PV = 0.452(10)^6 is somewhat larger than actually required, but is probably a good selection because it does provide a comfortable margin of safety. To contain the required amount of CN_2 , it would have to be charged to only $\sim 23.4 \times 10^6 \text{ N/m}^2$ (3400 psi) instead of the design value of 27.6 \times 10⁶ N/m² (4000 psi). It weighs only 0.58 kg (1.3 lbm), so three of them will weigh less 1.8 kg (4 lbm). This is a storage vessel only 22% greater than the weight of the contained gas, indicating a very good design.

7. Auxiliary Propulsion Impulse & Calculations

SPINUP:

 $I_z = 9.0 \text{ slug ft}^2$ final angular velocity - 100 rpm thruster lever arm - 1.5 ft $I_{sp} = 72 \text{ lbf sec/lbm}$

$$Ft = \frac{I_z \Delta \omega}{2L} \text{ 1bf sec/thruster}$$

$$\Delta\omega = \frac{100}{60} \ 2\pi = 10.47 \ \text{rad/sec}$$

$$Ft = \frac{9(10.47)}{2(1.5)} = 31.4 \text{ lbf sec/thruster}$$

= 62.8 1bf sec for 2 thrusters

DESPIN:

Assume final angular velocity - 5 rpm

$$\Delta\omega = 0.95(10.47) \text{ rad/sec}$$

PRECESSION:

Assume precession angle - 51° (at 100 rpm)

$$W_{p} = \frac{I_{z}^{\omega}}{I_{sp}} \frac{2\pi\theta}{360} = \frac{9(10.47) 2\pi (51)}{72(1.5) (360)}$$

= 0.776 1bm GN_2 required

$$Ft = 0.776(72) - 55.8$$
 1bf sec

DEFLECTION:

Assume service module mass - 55.8 1bm

service module $\Delta V = 1.5$ fps

Ft
$$-\frac{W\Delta V}{g} = \frac{55.6(1.5)}{32.2} = 2.6 \text{ lbf sec}$$

TOTAL IMPULSE:

Ft = 62.8 + 59.6 + 55.8 + 2.6 = 180.8 1bf sec

 GN_2 Required - $\frac{180.8}{72}$ = 2.52 lbm

 W_p (total) including leakage allowance - 2.52(1.3) = 3.27 1bm

Assume storage bottle weight - 3.27 (1.3) - 4.25 1bm

		<u>kg</u>	<u>1bm</u>
Component weights:	Fill Valves (1)	0.11	0.25
	Transducers (2)	0.23	0.50
	Squib Valves (6)	0.68	1.50
	Filters (1)	0.16	0.35
	Regulators (1)	0.18	0.40
	Solenoid Valves (8)	0.72	1.60
	Thrusters, 1 lbf (6)	0.54	1.2
	Lines	0.72	1.6
	Component Total	33.4	7.4

Loaded System Weight = 3.27 + 4.26 + 7.4 = 14.93 1bm

C. RELIABILITY COMPARISONS

1. General

Solid propellant motors inherently possess a high reliability because of their extreme simplicity, and their relatively advanced state of the art. Estimates of reliability for new designs are usually based on the demonstrated reliability of prior designs for which the motor components, materials of construction, and service applications are essentially the same as those for the

proposed design. The observed component failure rates are combined by rss addition to provide a quantitative estimate of failure probability (and reliability). Typical of the reliability estimates made by solid motor fabricators is that provided to Martin Marietta by Aerojet. Based on various component tests ranging in number from 122 to 2878, and a total number of failures of only 5, a best estimate of motor reliability for this particular application is 0.997. To actually attain this level of reliability, however, the proposed design must be subjected to a carefully planned development and qualification program.

Liquid (and gaseous) propellant systems tend to be less reliable than solid propellant motors because of their greater complexity, but this deficiency can usually be compensated for by providing redundancy for the critical system components (principally, valves). Using conventional reliability theory, a reasonably accurate quantitative estimate of system reliability may be made from the vast quantity of available statistical data of individual component failure rates, once the total system is adequately defined.

For the particular case of the proposed monopropellant hydrazine system, a preliminary system schematic (Fig. M-8) was first developed, combining the requirements of the ΔV propulsion and the auxiliary propulsion into a single system. To achieve a high reliability, the system operates in a blowdown mode (no pressure regulator), and redundancy is provided for all valve operations. Then the reliability computations were made as presented herein. It will be noted that the ΔV thruster/valve reliability is estimated to be $\sim\!0.9997$, which combined with a tank/feed system reliability of essentially 1.0, still provides a reliability >0.999 for the ΔV portion of the system. The addition of the auxiliary propulsion thrusters and valving to the system reduces the overall system reliability (including the ΔV thruster) to a value slightly less than 0.996.

The cold gas system proposed for the auxiliary propulsion functions was treated in a similar manner to the hydrazine system. A complete system to accomplish the four auxiliary propulsion functions was first evolved, and is shown schematically in Figure M-9. Then the predicted reliability for the system was computed as shown in Section C2 of the Appendix. It will be noted that the reliability of the individual thruster/valve assemblies is very high (generally >0.9999), but the regulator reliability is estimated to be only ~0.9975 , thereby reducing the overall system reliability to ~0.997 .

Figure M-8 Reliability Analys'is System Schematic Monopropellant Hydrazine System

Figure M-9 Reliability Analysis System Schematic Cold Gas Attitude Control System

For a combined system of a solid motor (to provide the ΔV requirement) and the cold gas system (to provide the auxiliary propulsion requirements), the predicted reliability is only slightly greater than 0.994, compared to a predicted reliability for the integrated hydrazine system of nearly 0.996. It is evident that the hydrazine system appears to have a slight advantage with regard to reliability, but the difference is not particularly significant. The principal reason for this difference is the need for a pressure regulator in the cold gas system, whereas the hydrazine system operates in a blowdown mode.

2. GN₂ Subsystem Reliability Analysis

JPL DATA:

Single Valve and Thruster Reliability for 1000 cycles is 0.9622

Q per cycle for valve and thruster - $0.378 (10)^{-4}$

Average Q per valve - 1 $(10)^{-6}$ /cycle

Q per thruster - $36 (10)^{-6}$ /cycle

ATTITUDE PROPULSION:

One thruster, two valves in parallel, 1000 cycles of operation

$$R = [1 - (1000(10)^{-6})^{2}] [1 - 1000(36)(10)^{-6}]$$

$$= (0.999999) (0.999964) - 0.99996$$

SPIN:

Two thrusters, two NO squib valves in series, one cycle of operation

Q for squibs - 0.0003/operation

$$R = [1 - 36(10)^{-6}]^2 [1 - 0.0003^2]$$

$$= (0.99993) (0.999999^{+}) = 0.9999$$

DESPIN:

Two thrusters, two valves in parallel, one cycle of operation

$$R = [1 - 36(10)^{-6}]^2 [1 - (10^{-6})^2]$$

DEFLECTION:

One thruster, redundant pyro valves, one operation, Rx 1.0

SUPPLY SUBSYSTEM:

2 squib valves N/C in parallel

Q/valve - 0.003

$$R = 1 - 0.003^2 = 1 - 9 (10)^{-8} \approx 1.0$$

FILTER:

$$R \approx 1.0$$

REGULATOR:

$$Q = 2.5 (10)^{-6}/\text{cycle}$$

1000 cycles estimated

$$R = 1 - 10^3 (2.5)(10)^{-6}$$

$$= 0.9975$$

M - 26

R_{TOTAL}, SUBSYSTEM

- = (0.9999) (0.9999) (0.9975)
- = 0.99736

3. Monopropellant Hydrazine System Reliability Analysis

Valve (single) and thruster reliability = 0.9479/1000 cycles

Q per cycle - $\frac{(1-0.9479)}{1000}$ = 52(10)⁻⁶ for valve and thruster

Q for valves: Marquardt, $Q = 0.1(10)^{-6}/\text{cycle}$

RADC, $Q = 1.6(10)^{-6}/\text{cycle}$

TRW, $Q = 0.3(10)^{-6}/\text{cycle}$

Use $Q = 1(1)^{-6}$ as conservative estimate

Q for thrusters = $51(10)^{-6}$ /cycle

ΔV THRUSTER:

One thruster with parallel valves and a N/O squib shut off Operation: <5 cycles

Valves are redundant to "final to open" (parallel) and redundant to "fail to close" (N/O squib valve).

$$R = [1 - 5(51)(10)^{-6}] [\{1 - 5(10)^{-6}\}^2]$$

= 0.99975 for open and operate mode

Use of N/O squib valve results in R ≈ 1.0 for fail to close mode

PRECESSION:

Two thrusters, each with single valves and a N/0 squib valve. Operation 1000 cycles. Thrusters are redundant in that either can perform the function

R (per leg) =
$$[1 - (1000)(10)^{-6}]$$
 $[1 - 1000(51)(10)^{-6}]$
= $(0.999)(0.949) - 0.948$ Q - 0.052

For redundant thruster operation:

$$R_{\text{Total}} = (1 - 0.052^2) = 0.9973$$

SPIN:

Two thrusters, each with parallel valves and a N/O squib valve

Operation: 1 cycle

$$R = [(1 - (10)^{-12}) (1 - 51 (10)^{-6})]^2$$
$$= (0.99995)^2 = 0.9999$$

DESPIN:

Same configuration as spin, but 5 cycles

$$R = [1 - 255 (10)^{-6}]^2$$
$$= 0.9995$$

DEFLECTION:

One thruster, parallel valves. Valves must open once.

$$R = (1 - 10^{-12}) (1 - 52 (10)^{-6})$$

= 0.9995

SUPPLY SYSTEM:

Parallel N/C squib valves

Q/valve - 0.0003

$$R_{\text{Total}} = 1 - 0.0003^2 = 1 - 9 (10)^{-8} \approx 1.0$$

Filter: $R \approx 1.0$

TOTAL SUBSYSTEM:

$$R = (0.99975) (0.9973) (0.9999) (0.9995) (0.9995)$$

= 0.9959

D. PLUME CONTAMINATION

Although a rigorous analysis of the solid motor plume is beyond the scope of this study, a cursory analysis was performed to identify the magnitude of the problem, and provide confidence that the selected solution (canted nozzles) is valid. To minimize the effects of the exhaust plume on the mother spacecraft, it is planned that the probe will have separated at least 315 m (1000 ft) from the mother spacecraft before the probe solid motor is fired, but even at this distance, the impingement problem can not be ignored. If the exhaust products were entirely gaseous, they probably could be tolerated, but unfortunately, they contain a large solid content. The 16% At contained in the propellant oxidizes to form $A\ell_2O_3$ solid particles that comprise $\sim 34\%$ of the exhaust products by weight. These particles are of sufficient size and are traveling at sufficiently high velocities that they constitute, in effect, a small belt of low velocity micrometeoroids. Their impact on science instruments (lenses, in particular), thermal control coatings, and thin insulation blankets can produce very detrimental effects that must be avoided if at all possible. Since the aluminum is essential in the propellant for attainment of high performance (specific impulse), it can not easily be eliminated, but impact on the spacecraft can be prevented to a degree by proper aiming of the exhaust flow. The approach to evaluating the problem follows.

- To estimate the magnitude of the plume impingement problem for solid propellant motors containing significant percentages of aluminum, it is necessary to know the approximate sizes of the solid particles in the exhaust, as well as the flow direction and velocity.
 - a) Regarding particle size, Reference 1 states "no theories capable of providing a particle size distribution have appeared." However, direct measurements reported in Reference 2 indicate that the solid (predominantly $A\ell_20_3$) particles are essentially spherical in shape, and have "a mass average diameter between 2 and 3 μ ." Further, it was observed that "the particle size seems to be insensitive to engine size, configuration, propellant ingredients, input aluminum particle size, and chamber pressure."

A comprehensive analytical study of solid particle flow b) paths reported in Reference 3 concludes that "only the smallest particles follow the gas and that the largest particles are concentrated near the axis, filling only about a third of the nozzle area at the exit plane." "Thus the particle flow field in any nozzle exit cone is essentially conical and the particles' drag on the gas will force the gas flow field to be essentially conical also." Figure M-10 shows quantitative results of the analyses for a nozzle with a divergent 15° half angle. The streamlines shown represent the outer boundaries for particles of the size indicated. Thus it will be seen that the heavy (5 to 10 μ diameter) particles appear to continue indefinitely on straight streamlines within the boundary of the extended nozzle exit cone. The lighter particles, however, follow slightly curved paths that extend outside the once. The number of particles traveling outside the 15° half-angle cone is relatively small, but it definitely is not zero.

Figure M-10 Solid Particle Streamlines

- c) The velocity of the particles issuing from the nozzle will be of the same order of magnitude as the effective exhaust velocity ($V_e \approx 9000$ fps for a high performance solid propellant motor). Reference 1 notes that "particles of less than 2 μ diameter will follow the gas velocity and temperature quite closely, whereas larger particles exhibit sizeable lags."
- 2) Using the above data, a rough order of magnitude estimate of the impingement effects on a mother spacecraft may be as follows:
 - a) Assuming an average particle size of 2 μ diameter, and a spherical shape, the mass of the average particle is

$$m = \frac{\pi}{6} \frac{0.002}{25.4}^3 \frac{248}{1728} = 3.7(10)^{-14} lbm/particle$$

b) Assuming the solid propellant motor contains 27 lbm propellant to be consumed in ${\sim}15$ sec, the rate of generation of exhaust products is

$$\frac{27}{15} = 1.8 \text{ lbm/sec}$$

c) Using the following theoretical exhaust composition for the TP-H-3062 propellant (Reference 4).

Constituent	mo1/100 gm	<u>M</u>	% by wt
HCL	0.5674	36	20.40
N_2	0.2944	28	8.25
H ₂ O	0.2435	18	4.38
H_2	1.4583	2	2.92
cō	1.0023	28	28.04
\mathbf{CO}_2	0.0351	44	1.54
$A\ell_2^2O_3$	0.3334	102	34.00
Other			.47
			100.00

it is evident that the $\mathtt{A} \mathtt{l}_2 \mathtt{0}_3$ particles will be generated at a rate of

$$0.34(1.8) = 0.61 \text{ 1bm/sec, or}$$

$$\frac{0.61}{3.7(10)^{-14}}$$
 = 1.65(16)¹³ particles/sec

d) Assuming a nozzle divergence half angle of 15° and a separation distance of 1000 ft between the nozzle (probe) and target (spacecraft), the cross-sectional area of the extended cone is found to be

$$A = \frac{\pi}{4} [2(1000) \tan 15^{\circ}]^{2} = 225,000 \text{ ft}^{2}$$

e) Assuming the flow to be uniform across the cross section of the cone (This is only a very rough approximation.), the rate of impact on the spacecraft is found to be

$$\frac{1.65(10)^{13}}{225,000} = 7.4(10)^7 \text{ particles/ft}^2/\text{sec}$$
$$= 5.1(10)^5 \text{ particles/in.}^2/\text{sec}$$

The rate of impact will decrease markedly during the 15-sec burn time of the motor, but the total number of impacts probably would still be $>(10)^6$ particles/in.²

The particles probably do not have sufficient momentum to penetrate multilayer insulation blankets, but they undoubtedly would degrade the performance of an insulation blanket, in addition to contaminating instrument lenses and thermal control coatings.

3) The use of canted nozzles obviously will alleviate the problem, but not eliminate it entirely. With canted nozzles it would be expected that none of the heavier (>5 μ diameter) particles would impact the spacecraft. Likewise, the vast majority of the lighter particles would be directed away from the spacecraft, but a few of the smaller particles would travel on a collision course. The question remains whether the number of impacts of these particles is sufficient to be of any real concern. It has been tentatively concluded that the impacts do not present a significant problem, but this is worthy of further investigation.

E. REFERENCES

- R. F. Hoglund: "Recent Advances in Gas-Particle Nozzle Flow." ARS Journal, May 1962.
- 2) B. Brown and R. P. McArty: "Particle Size of Condensed Oxide from Combustion of Metallized Solid Propellants." Proceedings of 8th International Combustion Symposium, Williams & Wilkins Co., Baltimore, Maryland, 1962.
- 3) James R. Rliegel: "Gas Particle Nozzle Flows." Proceedings of the 9th International Symposium on Combustion, Academic Press, Inc., New York, N.Y., 1963.
- 4) Thiokol Correspondence
- 5) Aerojet Letter, re: Reliability
 - a) Development of an Adhesively Bonded Beryllium Propulsion Structure for the Mariner Mars 1971 Spacecraft, JPL, TM 33-517, January 1972.
 - b) Chester A. Vaughan: "Apollo Reaction Control Systems." AIAA Paper No. 68-566. Presented at AIAA 4th Propulsion Joint Specialist Conference, Cleveland, Ohio, June, 1968.
 - c) Surveyor Project Final Report, Part I, Volume II, JPL TR 32-1265, July 1969.
 - d) Mariner Mars 1969 Final Project Report, Development, Design, and Test. JPL TR 32-1460, November 1970.
 - e) Planetary Explorer Liquid Propulsion Study, Final Report, Report No. RRC-71-R-249, Rocket Research Corporation, Redmond, Washington, 1971.

APPENDIX N

RESPONSE TIME FOR A BALLAST VOLUME TYPE MASS SPECTROMETER INLET SYSTEM

W. Fraser

March 7, 1972

P72-44487-097

M-E-M-O-R-A-N-D-U-M

TO:

S. L. Russak, K. Ledbetter, L. Bergquist

FROM:

W. Fraser

DATE:

07 March 1972

SUBJECT: Response Time For A Ballast Volume Type Mass Spectrometer

Inlet System

A previous memorandum* has discussed an inlet system for a mass spectrometer which decends slowly through the atmosphere of a planet, such as Venus or Jupiter, which has a dense atmosphere. The system is shown schematically in the figure below:

 \mathbf{F}_{12} System Inlet Leak

Ballast Inlet Leak

Mass Spectrometer Inlet Leak

Mass Spectrometer Inlet System

The system functions by maintaining a constant pressure in the manifold. This is accomplished with a variable, servo controlled, inlet leak to the ballast volume. With inlet system volumes of the order of a liter and descent times of a few thousand seconds, such a system can be operated so as to present a constant pressure of a few torr to the mass spectrometer inlet leak.

A concern with an inlet system for a mass spectrometer on a planetary descent probe is its response time. This response time is determined by the leak conductances and system volumes and, for some gases, by reactions between the sample and the inlet system surfaces. The subject of this memorandum is the calculation of the system response time for gas, inlet surface combinations for which surface reactions contribute negligibly. This then represents, for a given set of system parameters, a calculation of a lower bound on the response time.

*P71-44487-281, L. Bergquist and W. Fraser: Venus Mass Spectrometer Inlet System, Preliminary Analysis and Proposed Laboratory Investigation.

The configuration analyzed here is subject to the following assumptions:

- 1. The system has been open long enough that the servo controlled ballast inlet is maintaining the manifold pressure at a constant level.
- The pressure in the ballast volume is much lower than the manifold pressure. This occurs at high altitude where the response time is longest.
- Gas flow through the mass spectrometer can be neglected relative to that into the ballast volume.
- 4. An incremental partial pressure step occurs for one atmospheric constituent.

The partial pressures $P^{(2)}$ and $P^{(1)}$ of the incremented gas and the rest of the gas in the manifold can be described in terms of the flow conductances and volumes of the above figure by the following equations:

$$V_{2} \frac{dP^{(2)}}{dt} = (P_{1}^{(2)} - P^{(2)}) F_{12} - P^{(2)} F_{23}$$

$$V_{2} \frac{dP^{(1)}}{dt} = (P_{1}^{(1)} - P^{(1)}) F_{12} - P^{(1)} F_{23}$$

$$P^{(1)} + P^{(2)} = P_{0} \text{ (A Constant)}$$

Here, $P_1^{(1)}$ and $P_1^{(2)}$ are the partial pressures in the external atmosphere.

We now wish to add an increment, ϵ , to the external partial pressure, $P_1^{(2)}$, and calculate the resulting manifold pressure, $P_1^{(2)}$, as a function of time thereafter.

$$P_{1}^{(2)} = \begin{cases} P_{10}^{(2)}, t < 0 \\ P_{10}^{(2)} + \epsilon, t \ge 0 \end{cases}$$

$$P_{1}^{(1)} = P_{10}^{(1)}$$

 $P_{10}^{(1)}$ and $P_{10}^{(2)}$ are the partial pressures in the atmosphere prior to adding the increment.

The resulting variations, $\delta P^{(1)}$ and $\delta P^{(2)}$, from initial partial pressures, $P^{(1)}$ and $P^{(2)}$, in the manifold as described by:

$$V_{2} \frac{d (\delta P^{(2)})}{dt} = F_{12} \frac{P_{0}^{(1)}}{P_{0}} \epsilon - (F_{12} + F_{230}) \delta P^{(2)}$$

$$\delta P^{(2)} + \delta P^{(1)} = 0$$

where $P_0^{(1)}$ is the intial partial pressure in the manifold of gas other than the incremented gas

and \mathbf{F}_{230} is the initial value of the flow conductance into the ballast volume.

The differential equation for $\delta P^{(2)}$ has the following solution:

$$\delta P^{(2)} = \varepsilon (1 - f_0^{(2)}) \frac{P_0}{P_1} (1 - e^{-t/T})$$

where ϵ is the increment in the atmospheric partial pressure of the test gas

 $\mathbf{f_0}^{(2)}$ is the fractional abundance of the test gas prior to the step increase $\mathbf{P_0}$ is the manifold pressure

 \mathbf{P}_{1} is the atmospheric pressure

and T is the response time constant given by: $T = \frac{P_0}{P_1} \frac{V_2}{F_{12}}$

Thus a step, ϵ , in the atmospheric partial pressure results in a step, $\epsilon \left(1-f_0^{(2)}\right)P_0/P_1, \text{ in the manifold, or sample, pressure with a rise time of P_0V_2/P_1F_{12}.}$

APPENDIX O

AEROSHELL STRUCTURE PARAMETRIC WEIGHT STUDY

T. B. Sharp

June 16, 1972

AEROSHELL STRUCTURE PARAMETRIC WEIGHT STUDY

I. INTRODUCTION

A parametric structural weight study was performed to evaluate the weight of the aeroshell structure as a function of pressure, base diameter, structural material, and shell construction. Four aeroshell diameters, two methods of construction, and two materials were considered in this study. The range of aeroshell diameters and design pressures was selected to encompass the various mission constraints for a Jupiter probe as well as probes to Saturn, Uranus, and Neptune.

II. METHOD OF AEROSHELL ANALYSIS

Conical Shell - Two types of construction (sandwich and frame stabilized monocoque) were considered for the shell structure of the aeroshell. Both types of construction were analyzed assuming a uniform external pressure on a conical shell which is simply supported at the boundaries. The basic equation for general instability allowable is:

$$P_{cr} = \frac{0.736 \text{ E}}{\frac{L}{R} \left(\frac{R}{t}\right)^{5/2}}$$
 [0-1]

where:

P_{cr} = allowable pressure

E = Young's modulus

L = slant height of the cone

R = average slant radius of the cone

t = cone shell thickness

The two types of construction for the conical shells are idealized to monocoque structures using the assumption that under the discussed loading condition, shell structures having equal radii of gyration in the circumferential direction will work to the same stress level before failing in general instability. Required applicable to the two types of construction considered. These modifications are discussed below.

Sandwich Construction

By equating radii of gyration for monocoque to radii of gyration for sandwich over some finite width, b,

$$\left[\frac{bt_m^3}{12bt_m}\right]^{\frac{1}{2}} = \left[\frac{2bt_f\left(\frac{d}{2}\right)^2}{2bt_f}\right]^{\frac{1}{2}}$$
[0-2]

where:

 t_f = thickness of sandwich face sheet

d = centroidal distance between face sheets

 t_{m} = thickness of monocoque skin

solving for $t_{\rm m}$

$$t_{m} = 1.73 \text{ d}$$
 [0-3]

using the assumption of equal stress

$$\frac{PR}{t_m} = \frac{P_s R}{2t_f} \qquad P_s = \frac{2Pt_f}{t_m}$$
 [0-4]

where

P_s = critical collapse pressure for sandwich cone and substituting Equations [0-3] and [0-4] into Equation [0-1], the general ins instability equation for conical sandwich shells is

$$P_{s} = \frac{3.35 \text{Et}_{f}}{LR^{3/2}}$$
 [0-5]

In addition to the general instability discussed above, the face sheet material is checked against yielding. It is also assumed that the sandwich core is of sufficient density and cell size as to preclude face wrinkling and intercellular buckling of the face sheets.

Frame Stabilized Monocoque Construction

The frame stabilized monocoque construction consists of a constant thickness skin stabilized by circumferential frames with zee (or channel) cross sections. The general instability equation for this type of construction is developed in the same manner as for the sandwich construction.

By equating radii of gyration over the same finite width, b,

$$\left[\frac{bt^3}{12bt}\right]^{\frac{1}{2}} = \left[\frac{I}{b_g t}\right]^{\frac{1}{2}}$$
[0-6]

where

 $b_s = frame spacing$

t = smear thickness of frame and skin

I = moment of inertia of one frame and b width of skin about an
 axis parallel to generator of conical shell.

solving for t

$$t = \left[\frac{12I}{b_s}\right]^{\frac{1}{2}}$$
 [0-7]

using the assumption of equal stress

$$\frac{PR}{t_m} = \frac{P_F^R}{t_m} \qquad P_F = \frac{\bar{t} P}{t_m} \qquad [0-8]$$

where

 P_F = critical collapse pressure for frame/skin cone, and substituting Equations [0-7] and [0-8] into Equation [0-1], the general instability equation for frame stabilized monocoque conical shells is

$$P_{F} = \frac{0.736 \text{ E}\bar{t}}{LR^{3/2}} \left[\frac{12I}{b_{s} t} \right]^{3/4}$$
 [0-9]

In addition to the general instability discussed above, various local instability checks must be made for the frame stabilized monocoque structure. As suggested in Reference 4, the various elements of this structure are assumed to be flat plates.

The local instability check for the frame elements, is expressed in general equation form as:

$$P = \frac{K\pi^2 E}{12(1-v^2)} \left(\frac{t_r}{b_r}^2\right) \left(\frac{\bar{t}}{R}\right)$$
 [0-10]

where

K = depends on boundary condition of frame elements

t = frame element thickness

 $b_r = frame element width$

v = poissons ratio

Local instability of the cone skin, between frames, is checked by the use of two equations. Equation [0-11] assumes the skin to be a flat plate and best accounts for the edge restraint for very close frame spacing. Equation [0-12] assumes the skin to be a truncated cone and best accounts for the benefit of hoop continuity for wide frame spacing; therefore, the higher allowable from these two equations is used.

$$P = \frac{K\pi^2 E}{12(1-v^2)} \left(\frac{t_s}{b_s}\right)^2 \left(\frac{\bar{t}}{R}\right)$$
 [0-11)

$$P = \frac{0.736 \text{ E } \bar{t}}{b_{s}} \left(\frac{t_{s}}{R}\right)^{3/2}$$
 [0-12]

where

t_s = skin thickness

b_s = frame spacing

Analysis consists of selecting appropriate element sizes so that all the stability requirements will be satisfied, the structure will not yield and a minimum weight structure will be achieved.

End Ring

Analysis of the shell structure of the aeroshell assumes the ends of the cone to be simply supported. An end or edge ring is required to provide this support and to prevent general instability of the cone in the N = 2 mode of buckling. Analysis of the end ring was perforemed to establish a ring of minimum mass which is sufficiently stiff to prevent the inextensional form of buckling of the cone shell. Prevention of the inextensional form of buckling allows the design of the cone shell wall and end ring to be uncoupled. The equation which evaluates the end ring stiffness properties is

$$\frac{I_r}{A^B} = \frac{\psi}{C(E_r^{1-B})}$$
 (Ref 3)

where

- I = moment of inertia of end ring about its centroidal axis parallel to generator of conical shell
- A = cross-sectional area of end ring
- B = generalized stiffness parameter
- C = depends on shell properties and ring-eccentricity parameter, (ψ)
- E_ = Young's modulus of end ring
- ψ = ring eccentricity parameter

Once the cross-sectional shape of the end ring is determined, the end ring moment of inertia and area can be expressed as a function of a characteristic depth and thickness of the specified shape. The characteristic depth and thickness may then be varied, within design constraints, to obtain a minimum mass end ring.

Nose Cap

General stability of the spherical nose cap is checked using an empirical equation from Reference 2. The equation which predicts the nose cap buckling pressure is

$$P = 0.278 E \left(\frac{t}{R}\right)^2$$
 [0-14]

where

R = radius of curvature

Application

The aeroshell is analyzed as two conical shells with the payload frame located between. The forward cone is subjected to an external uniform collapsing pressure producing compressive hoop and longitudinal stresses. The aft cone is subjected to an external uniform collapsing pressure producing compressive hoop and longitudinal tensile stresses.

The general instability equation used in this analysis is for structure subjected to an external uniform pressure loading. This is not the case for the aft cone. The stabilizing effect of the longitudinal tensile stresses in the aft cone results in a slightly conservative design, but the general instability equations will be used for both cones.

Analysis of the sandwich structure consists of determining the proper face thickness and core height, for a given cone geometry and design pressure that will achieve a minimum weight structure and satisfy the stability equations and yield requirements.

The general instability allowable of a conical shell is based on the mid-cone geometry of the shell. The general instability allowable of a frame stabilized shell is based on the mid-cone frame spacing and frame geometry. Each element of the mid-cone geometry is checked for local instability. The selected skin thickness and frame geometry at mid-cone is held constant for the entire cone, but the frame spacing is varied forward and aft of the midcone geometry to achieve a minimum weight structure.

III. APPROACHES CONSIDERED FOR PARAMETRIC STUDY

Four basic components (Fig. 0-1) of the aeroshell were considered for the weight study. In the analysis of these components, certain dimensional parameters were restricted in an attempt to ensure a paractical design and a fair comparison of structural weights. A detailed list of the parametric controls is discussed later in this section.

The four aeroshell geometries considered varied only in the base diameter dimension. The four base diameters studied were 2.5, 3.0, 3.5, and 4.0 ft. In all cases, the cone half angle was 60°. The nose cap was assumed to be spherical with a 9.0-in. radius of curvature and a 4.5-in. base radius. The diameter of the payload ring was assumed to be one-half of the cone base diameter. Previous studies have shown that the location of the payload ring has a negligible effect on the cone shell weight. No weight allowance was made in this parametric study for the payload ring.

Figure 0-1 Aeroshell Components

In the analysis of the aeroshell, only the entry aerodynamic pressures were considered, i.e., a vented aeroshell. The aeroshell weights presented in this study include the cone shell, nose cap, and end ring weights. The aeroshell weights are considered optimum and no allowance was made for difficulty encountered in obtaining the selected dimensions (tolerances) and weight growth caused by fabrication (fasteners, splices, etc.). Sandwich construction includes weights for face sheets, core material, adhesive, and edge members. The weight allowance for edge members was based on each cone being fabricated in quarter sections and each section bounded by an edge member.

The cone shell weights for frame stabilized skin consists of skin and frame weights. The skin is assumed constant thickness for each cone and the frame cross-section geometry is constant for each cone.

The two type of materials considered for this study were 7075-T6 aluminum and $6A\ell-4V$ titanium, Cond III. The material properties used were assumed at 200°F and are shown in Table 0-1.

Table 0-1

7075 -T6 Aluminum	6Al-4V Titanium III
F _{TU} = 71,000 psi	$F_{TU} = 143,000 \text{ psi}$
F _{CY} = 63,000 psi	F _{CY} = 135,000 psi
$E_{C} = 10 \times 10^{6} \text{ psi}$	$E_{\rm C} = 15.7 \times 10^6 \text{ psi}$
$\rho = 0.101 \text{ 1b/in.}^3$	$\rho = 0.16 \text{ lb/in.}^3$

For the sandwich construction, only the face sheet material was varied. The material for the other sandwich components remained constant over the entire range of the parametric study for both face sheet materials. Table O-II lists the sandwich component materials and weights. The end ring material was the same as the selected face sheet material.

Table 0-2

Face Sheets	7075-T6 Aluminum or 6Al-4V Titanium
Core, Aluminum	$\rho = 0.00470 \text{ lb/in.}^3$
Adhesive	ρ = 0.00167 lb/in ² (two surfaces)
Edge Members, Aluminum	$0 = 0.101 \text{ lb/in.}^3$

For the frame-stabilized skin construction, the skin and frames and end ring were of the same material.

The range of design pressures considered was from 50 to 600 psi.

Parametric Controls

In this parametric study, certain dimensional parameters were restricted in an attempt to ensure a practical design configuration. Figure 0-2 shows the two types of construction considered and designates the dimensional parameters which were controlled. Table 0-III lists the minimum values of these controlled dimensions.

Table 0-3

MINIMUM GAGES AND DIMENSIONS

TYPE OF CONSTRUCTION	t _s	tc	tr	b _r	Ъ
Sandwich	0.005	0.10	_	-	-
Frame Stabilized Skin	0.020	_	0.015	0.50	0.25

Figure 0-2 Structural Details

Figure 0-3 shows the cross-sectional shape of the end ring and the range of the controlled dimensions which were used for the weighing of the end ring.

IV. RESULTS OF PARAMETRIC STUDY

A detailed weight breakdown for the four basic aeroshell components is shown in Tables 0-4 thru 0-7. The total aeroshell weights are depicted graphically in Figures 0-4 thru 0-7 as a function of design pressures and base diameters. Figures 0-8 thru 0-11 show a comparison of aeroshell weights versus design pressures for the two types of construction and materials considered.

Figures 0-8 thru 0-11 indicate that for the lower range of pressures considered, the aluminum frame-stabilized skin construction produces the lightest weight aeroshell. The titanium framestabilized skin construction is relatively inefficient at the lower pressures but becomes more efficient at the higher pressures. The aluminum structure reach a working stress equal to its compressive yield strength at much lower pressures than do the titanium structures; thus aluminum is the more efficient material for either type of construction at the lower pressure range, As the pressure increases and the titanium reaches a working stress equal to its compressive yield strength, then titanium becomes the more efficient of the two materials for both types of construction. The pressures at which the aluminum and titanium curves cross each other is dependent on the base diameter of the aeroshell. (Fig. 0-8 thru 0-11). This cross over point occurs at lower pressures for the larger diameter aeroshell because these shells are more efficient, i.e., for a given design pressure, a larger percentage of the shell structure material is working to its compressive yield strength.

In general, the weight of the sandwich construction was not very competitive with frame-stabilized skin construction at the higher design pressures. When the design stresses of the frame/skin construction are equal to the sandwich face skin stresses, the sandwich construction carries a weight penalty because of the additional components that are not really necessary to carry membrane loads, i.e., adhesive, core, and edge members. At the lower design pressures, when the frame/skin elements are in the instability range, the sandwich face sheets are capable of working to the

compressive yield strength of the material; consequently the sandwich construction weight becomes much more competitive with that of the frame-stabilized skin construction. At very low design pressures (below the 50 psi considered in this study) sandwich construction would prove to be the lighter weight method of construction. This can be seen by extrapolating the curves of Figures)-8 thru 0-11 to design pressures of less than 50 psi.

It is recognized that the total weight of sandwich shell construction is dependent on more variables than that of frame stabilized skin construction. It then follows that the aeroshell weights shown in this study are perhaps more optimum for frame/skin construction than for the sandwich construction. But, in general, for the design pressures, the methods of construction, and types of materials considered in this study, the following summary statements are applicable. Frame-stabilized skin construction results in a more practical method of fabrication and lighter weight aeroshell than sandwich construction. For the lower range of design pressures, an aluminum structure is lighter than titanium but for the higher range of design pressures, a titanium structure will result in the lighter aeroshell structure.

V. DISCUSSION OF USAGE OF CURVES

The curves presented in this appendix provide the basic structural weights for 60° (half angle) conical aeroshells using two methods of construction, two types of materials and a wide range of design pressures. The curves also cover a range of base diameters from 2.5 to 4.0 ft and may be interpolated for base diameters not shown. The aeroshell weights shown represent a nearly optimum weight for the cone shell, nose cap, and end ring. In order to arrive at a complete aeroshell weight, the weights of the payload ring, heat shield, and any other applicable structure should be added to the curve weights shown herein. It should also be noted that the weights shown are considered optimum, it is suggested that a non-optimum factor be applied to these weights to account for material tolerances, splices, fasteners, etc.

It should be emphasized that aeroshell weight curves reflect certain assumptions and constraints which have been previously listed in detail in this section. The curves should be used only as a preliminary guide towards estimating an aeroshell weight. Obviously an accurate aeroshell weight may only be determined after a specific aeroshell design has been established.

VI. REFERENCES

- 1. V. I. Weingarten, E. J. Morgan, P. Seide: Final Report on Development of Design Criteria for Elastic Stability of Thin Shell Structures. Report No. STL/TR-60-0000-19425, Space Technology Laboratories, December 1960.
- 2. R. Roark: Formulas for Stress and Strain, Fourth Edition
- 3. S. C. Dixon, J. B. Carline: Preliminary Design Procedure for End'Rings of Isotropic Conical Shells Loaded by External Pressure. NASA Technical Note, NASA TN D-5950.
- 4. E. H. Wickell, R. F. Crawford: Optimum Ring Stiffened Cylinders Subjected to a Uniform Hydrostatic Pressure. Paper No. 578F, Society of Automotive Engineers, October 1962.
- 5. Monsham Barúch, Josef Singer, Ovaclic Harari: General Justability of Conical Shells with Non-Uniformly Spaced Stiffeners Under Hydrostatic Pressure. Israel TAE Report No. 37, Israel Institute of Technology-Department of Aeronautical Engineers, Haifa
- 6. NASA Structural Analysis Manual

Table 0-4 Aeroshell Weights, 1b

PRESSURE AFT CONE	FWD CONE	ALUMINUM NOSE CAP							
AFT CONE	FWD CONE	NOSE CAP					TITANIUM		
			END RING	TOTAL	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL
50 10.6	2.8	0.3	3.0	16.7	14.4	3.9	0,3	2.0	23.6
	3.6	4.0	3,7	21.2	18.2	6.4	0.5	5,3	28.8
	4.5	0.5	4.9	30.2	23.4	6.1	9.0	7.9	36.5
-	5.2	9.0	8.3	43.3	27.2	7.0	8.0	7,2	42.2
	0.9	0.7	16.5	61.5	33.0	7.7	6.0	8,3	6.67
500 47.3	6.9	8.0	27.6	82.6	40.4	8,3	1,0	11.7	61,4
	7.7	6.0	42.0	106.9	47.7	9,1	1,1	18.1	76.0

			SAND	SANDWICH - BASE DIAMETER = 4,0 ft	DIAMETE	IR = 4,0 ft				
			ALUMINUM					TITANIUM		
PRESSURE	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL
50	15.7	2.6	0.3	3.0	21,6	11,9	2.6	0.3	2.0	19,8
100	24.5	3.7	9.0	3.7	32.3	16.7	3,1	0.5	5,3	25,6
200	42.2	6.2	0.5	6.9	53,8	27.2	9.4	9.0	6.4	38.8
300	59.8	8.7	9.0	8.3	77.4	37.7	6,3	8.0	7,2	52,0
400	77.1	11.2	0.7	16.5	105,5	48.2	7.9	6.0	8,3	65,3
200	94.4	13.6	9.0	27.6	136,4	58.6	9.6	1,0	11,7	80.9
009						0.69	11.2	1,1	18,1	4.66

Table 0-5 Aeroshell Weights, 1b

			FRAME STAB	ILIZED SKIN	I - BASE	FRAME STABILIZED SKIN - BASE DIAMETER - 3.5 ft	3.5 ft			
			ALUMINUM					TITANIUM		
PRESSURE	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL	AFT CONE	тир сом	NOSE CAP	END RING	TITAL
50	7.7	2.0	6.0	2.8	12.8	10.5	2.7	6.0	4.4	17.9
700	8.6	2.5	0.4	2.9	15.6	13.3	3,4	0.5	4.4	21,6
200	13.5	3.2	0.5	0.4	21.2	16.9	4,3	9.0	5.1	26.9
300	19.7	3.6	9.0	4.7	28.6	19.5	6.4	8.0	5,6	30.8
400	25.6	4.1	0.7	8.0	38.4	22.2	5.5	6.0	6.2	34.8
200	31.7	4.6	8.0	13.7	50.8	26.9	5.9	1.0	7,1	40.9
009	37.6	5.1	6.0	20.7	64.3					

			SANE	SANDWICH - BASE DIAMETER = 3.5 ft	DIAMETE	R = 3.5 ft				
			ALUMINUM					TITANIUM		
PRESSURE	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL
50	9.2	1.8	0.3	2,8	14.1	8.4	1.9	0,3	4.4	15.0
100	14.4	2.5	7.0	2.9	20.2	11,5	2,2	0.5	4.4	18.6
200	24.9	4.2	0.5	4.0	33.6	18.7	3,1	9.0	5,1	27.5
300	35.3	5.9	9.0	4.7	46.5	25.9	4,2	8.0	9'9	36.5
700	45.6	7.5	0.7	8.0	61.8	33.0	5,3	6.0	6.2	45.4
200	55.7	9.2	8.0	13.7	79.4	40.2	6.4	1.0	7,1	54.7
009	65.8	10.9	6.0	20.7	98.3	47.3	7.4	1,1	8.2	64.0

Table 0-6 Aeroshell Weights, 1b

			FRAME STABI	LIZED SKIN	- BASE D	FRAME STABILIZED SKIN - BASE DIAMETER = 3.0 ft	.0 ft			
			ALUMINUM					TITANIUM		
PRESSURE	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL
50	5.4	1,3	6.0	2.3	6.3	7.7	1.7	0,3	3.7	13,1
100	8.9	1.6	4.0	2.3	11.1	9,3	2,2	0.5	3.7	15.7
200	9.0	2.1	0.5	2.6	14.2	11.7	2,8	9.0	3,7	18,8
300	12.3	2.4	9.0	3.1	18.4	13.4	3,2	8.0	4,2	21.6
700	16.1	2.6	0.7	3,8	23.2	14.9	3.5	6.0	4.5	23.8
200	19.8	2.9	8.0	5.7	29.2	17.0	3.8	1.0	8.4	26.6
009	23.6	3.2	6.0	8.8	36.5	20.1	4.1	1,1	5.5	30.8

			SAND	SANDWICH - BASE DIAMETER = 3.0 ft	3 DIAMETE	R = 3.0 ft				
		:	ALUMINUM					TITANIUM		
PRESSURE	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL
50	6.1	1.2	0.3	2.3	6.6	5.7	1.3	0.3	3.7	11,0
100	9.5	1.6	7.0	2.3	13.8	7.6	1.4	0,5	3.7	13,2
200	16.4	2.6	0.5	2.6	22.1	12.2	1.9	9.0	3,7	18.4
300	23.1	3.7	9.0	3,1	30.5	16.6	2.6	8,0	4.2	24,2
400	29.8	4.8	0.7	3.8	39.1	21.5	3.2	0.9	4,5	30,1
200	36.5	5.8	8.0	5.7	48.8	26.0	3.9	1,0	8.4	35.7
009	43.1	6.9	6.0	8.8	59.7	30,6	4.6	1,1	5,5	41,8

Table 0-7 Aeroshell Weights, 1b

			FRAME STAB	FRAME STABILIZED SKIN - BASE DIAMETER = 2.5 ft	- BASE 1	IAMETER =	2.5 ft			
			ALUMINUM					TITANIUM		
PRESSURE	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL
50	3.5	0.7	0.3	1.9	6.4	4.8	1.0	0.3	3,1	9.2
100	4.4	6.0	0.4	1.9	7.6	6.1	1.2	0.5	3,1	10.9
200	5.7	1.2	0.5	1.9	9,3	7.6	1,6	9.0	3,1	12.9
300	7.2	1.3	9.0	2.1	11.2	8.7	1.8	8.0	3.1	14.4
400	4.6	1.5	0.7	2.5	14.1	9.6	2.0	6.0	3,1	15.6
200	11.5	1.6	8.0	2.9	16,8	10.5	2.2	1.0	3,4	17.1
009	13.8	1.7	6.0	3.5	19.9	12.0	2,3	1,1	3,7	19.1
						:				
			SANI	SANDWICH - BASE DIAMETER - 2,5 ft	E DIAMETE	IR = 2.5 ft				

			SANDI	WICH - BAS	E DIAMETE	SANDWICH - BASE DIAMETER = 2,5 ft				
			ALUMINUM					TITANIUM		
PRESSURE	AFT CONE	FWD CONE	NOSE CAPQ	END RING	TOTAL	AFT CONE	FWD CONE	NOSE CAP	END RING	TOTAL
50	3.9	8.0	0.3	1.9	6.9	3.7	8.0	0.3	3.1	7.9
100	5.9	6.0	7.0	1.9	9.1	8.4	6.0	0.5	3,1	9,3
200	10.0	1.5	0.5	1.9	13.9	7.4	1,1	9.0	3,1	12.2
300	14.1	2.1	9.0	2.1	18.9	10.2	1,4	8.0	3,1	15,5
400	18.2	2.7	0.7	2.5	24.1	12,9	1.8	6.0	3,1	18.7
500	22.2	3.3	0.8	2.9	29.5	15.7	2,1	1.0	3,4	22,2
009	26.3	4.0	6.0	3.5	34.7	18.4	2,5	1,1	3.7	25,7

Figure 0-3 End Ring Cross Section

Figure 0-4 Aeroshell Weights

Figure 0-5 Aeroshell Weights

Figure 0-6 Aeroshell Weight

Figure 0-7 Aeroshell Weight

Figure 0-8 Aeroshell Weights

Figure 0-9 Aeroshell Weights

Figure 0-10 Aeroshell Weights

Figure 0-11 Aeroshell Weights

APPENDIX P

LIGHTWEIGHT JUPITER PROBE DEFINITION

J. Hungate

June 16, 1972

LIGHTWEIGHT JUPITER PROBE DEFINITION

During the study, the definition of the nominal Jupiter probe had been completed and work on the parametric analyses, identified in Figure V-1, Vol II of this report, was just beginning when a meeting between personnel of JPL and Martin Marietta, indicated that the weight of the nominal Jupiter probe exceeded its expected weight. Therefore, it was agreed that the constraints for the nominal Jupiter probe would be held constant except for those in Table P-1. The effort resulted in the probe configuration shown in Figure P-1 with the corresponding weight breakdown shown in Table P-2. Estimated MMC-MOPS modification is presented in Table P-3. Using a 1350-1b spacecraft weight results in a spacecraft-probe-system weight of approximately 1750 lb.

The probe was defined without knowledge of the entry uncertainty and with only a cursory link analysis which estimated the RF power to be 23 watts at 1 GHz when using a 5-ft diameter spacecraft antenna.

Table P-1 Constraints for Light Weight Probe

```
MOPS at 1350 lb

T-111 (5-Seg)/Centaur/Burner II

Probe Weight + S/C Modification Weight ≤ 400 lb (Goal)

R<sub>P</sub> = 6 R<sub>J</sub>

Probe Deflection Mode

Deflection Radius = 30 x 10<sup>6</sup> km (ΔV = 210 m/s)

Entry Angle = 10° (Deceleration Force Reduced From 1500 g to 764 g)

Deceleration to < M = 1 at 100 mb (Entry Ballistic Coefficient = 0.65 slug/ft²)

Depth of Penetration = 10 bars

Atmosphere - Cool/Dense (Descent Ballistic Coefficient = 0.12 slug/ft²)
```


Figure P-1 Light Weight Jupiter Probe Configuration

Table P-2 Weight Breakdown for Lightweight Jupiter Probe

		
Probe Weight Statement	1b	kg
Science	17.50	7.9
Power and Power Conditioning	10.6	4.8
Cabling	12.50	5.7
Data Handling	5.20	2.4
Attitude Control Subsystem	18.98	8.6
Communications	4.5	2.0
Pyrotechnic Subsystems	11.96	5.4
Structures	59.45	27.0
Forward Heat Shield	62.0	28.2
Mechanisms	12.20	5.5
Thermal	13.70	6.2
Propulsion (Dry)	7.5	3.4
•		
Propellant	27.6	12.5
Engineering Instrumentation	0	0
Margin - (15% of above)	39.50	17.9
Weight Ejected (Total)	303.28	137.5
Weight Ejected	303.28	137.5
Deflection Propellant Deflection Propulsion Module & Support (-43. Nitrogen Gas	2 1ь)	
Weight Despun Probe Service Module (-53.41 lb)	260.08	118.0
Weight at Entry Ablator Lost During Entry (-45.0 lb)	206.67	93.7
Post-Entry Weight Base Cover Quadrants (-22.66 lb)	161.67	73.3
Weight on Parachute Initially Entry Probe Body Assembly (-57.5 1b)	139.01	63.0
Weight on Parachute Final Main Parachute (-2.80 lb)	81.5	36.9
Final Descent Weight	78.5	35.6

Table P-3 MOPS Modification for the 6 $\rm R_{J}$ Probe

	<u>Lb</u>
Probe Structural Adapter	9.00
Spin Table	20.00
Environmental Cover & Separation	27.20
Receiver Antenna (5-ft diameter)	14.80
Antenna Pointing Drive	5.00
Receiver	2.40
Cabling	2.00
Thermal Control	2.30
Data Handling	0.00
15% Contingency	12.40
	95.10

APPENDIX Q

SEPARATION SPRING ANALYSIS

R. Moses

June 20, 1972

SEPARATION SPRING SYSTEM

It has been shown by analyses and test that a helical compression-spring system is capable of separating spacecraft in orbit satisfactorily, with low tip off rates at separation. This was evaluated for the Air Force Vela satellite and other satellites.* To evaluate the separation of a typical probe from a carrier satellite, the following analysis was performed, using a reference probe weight of 147 kg (325 lbm) and spacecraft weight of 499 kg (1100 lbm). It is shown that the weight of such a system is very nominal.

The total energy imparted to two separating bodies = E_1 + E_2 and

$$E_1 = 1/2 M_1 V_1^2$$
 and $E_2 = 1/2 M_2 V_2^2$

where

 M_1 = probe mass

M₂ = spacecraft mass

V_l = probe imparted velocity

V₂ = spacecraft imparted velocity

Total energy then is

$$E_{T} = 1/2 M_{1}V_{1}^{2} + 1/2 M_{2}V_{2}^{2} = 1/2 M_{1}V_{1}^{2} + 1/2 M_{1} \times \frac{M_{2}}{M_{1}} \left(V_{1} \times \frac{M_{1}}{M_{2}}\right)^{2}$$

$$E_{T} = 1/2 M_{1}V_{1}^{2} + 1/2 M_{1}V_{1}^{2} \times \frac{M_{2}}{M_{1}} \times \frac{M_{1}^{2}}{M_{2}^{2}} = 1/2 M_{1}V_{1}^{2} + \frac{M_{1}}{M_{2}} 1/2 M_{1}V_{1}^{2}$$

$$E_{T} = \left(1/2 + \frac{M_{1}}{2M_{2}}\right) M_{1}V_{1}^{2} \quad \text{or} \quad V_{1} \sqrt{\frac{2E}{M_{1} \left(1 + \frac{M_{1}}{M_{2}}\right)}}$$

G. D. Palmer and D. H. Mitchell: "Analysis and Simulation of a High Accuracy Spacecraft Separation System." Journal of Spacecraft and Rockets, Vol. 3, No. 4, April 1966.

however,

$$\mathbf{v}_2 = \mathbf{v}_1 \, \frac{\mathbf{M}_1}{\mathbf{M}_2}$$

Therefore,

$$\Delta V = V_1 + V_2 = 1 + \frac{M_1}{M_2} \sqrt{\frac{2E}{M_1 \left(1 + \frac{M_1}{M_2}\right)}}$$

This can also be written:

$$E_{T} = \frac{\Delta V^{2} M_{1}}{2 \left(1 + \frac{M_{1}}{M_{2}}\right)}$$

For a separation velocity of 0.91 m/sec (3 ft/sec), the spring energy to separate a 147 kg (325 lbm) probe from a 499 kg (1100 lbm) spacecraft is:

$$E_{T} = \frac{3^2 \times 325/32.2}{2 \left(1 + \frac{325/32.2}{1100/32.2}\right)} = 35.06 \text{ ft lbf of energy.}$$

For a 3-spring separation system, the energy/spring - 11.7 ft lbf.

It can be shown from spring design tables that spring weight will be in the vicinity of 0.57 kg/Nm (0.017 lbm per ft lbf of energy) for springs having a mean-coil-diameter/wire-diameter ratio of 8 (normal usage). Thus, the springs would each weight 0.09 kg (0.199 lbm). This is an insignificant weight for the separation energy.